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Abstract

Genetic regulatory networks are highly complex dynamical systems which are believed

to control the behaviour and evolution of cells within many lifeforms through their gen-

eration of mRNA and respective proteins. One of the major problems in mathematical

biology, the MULTISTABILITY problem, is the question of whether or not a given ge-

netic regulatory network has more than one stable fixed state. In a way, it provides a

method to find switches within the large genetic regulatory network and thus understand

how to nudge the state of a cell based on the state of these switches. This thesis studies

various models of genetic regulatory networks and develops a new method to approach the

MULTISTABILITY problem, called an activation-repression numbering. By using this

numbering, the problem is determined to be NP-Complete and thus intractable. How-

ever, further study provides a heuristic which can solve the MULTISTABILITY problem

for special cases efficiently.
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Chapter 1

Introduction

Mathematical biology is a young but sophisticated branch of mathematics. It takes

results from applied and pure mathematics, including dynamical systems [62], combina-

torics [75], computational theory [76], topology [54] and statistics [18] and uses them to

gain an insight into the complex sciences of biology and medicine. Both are fields which

do not easily yield to rigourous mathematical analysis, due to the sheer immensity and

complexity of the systems with which they work and the chaotic behaviour thereof. Sta-

tistical averaging or simplification of these systems commonly provides faulty deductions,

while extensive computational simulation generally requires excessive resources and does

not provide much intuition beyond the specific model being simulated. Historically, due

to these complexities, biology has been more dependent on empirical techniques than

mathematical ones [58]. Traditionally, the only area in which mathematical biology ws

commonly used was in population dynamics where statistical averaging techniques could

be effectively used to determine the ebb and flow of various population groups [72].

However, with the recent decoding of the human genome [48] and the slow reverse

engineering of the genetic regulatory network [69], as well as recent work in neuronal

studies, the need for a solid mathematical model to gain intuition on these complex

systems has become essential. Billions of dollars of research has been poured into this

field in the hopes that the intuition gained from new models and theorems will lead

to more and better drugs and treatments. While a majority of the models have been

complicated computational models based on simulating the system dynamics, there has

been some exciting research in determining methods to simplify said models without

sacrificing their deductive capabilities. Within genetic regulatory networks, this has led

1
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to models such as Kauffman’s Boolean network model [41] and Glass’s piecewise linear

ODEs [32].

In the human genome, there are over 20,000 protein producing genes [39], with their

proteins each interacting with other genes and proteins in surprisingly complicated ways.

To define the entire molecular system to a reasonable level of accuracy based on exper-

imentally known results would be an immense project. To perform the experimental

work required to determine the entire molecular system beyond known results would re-

quire large numbers of labs collaborating for decades. This is all assuming non-genetic

interactions are ignored and without discussing the implications of any of the chemical

reactions. Obviously, this is effectively useless for providing intuition about potential

drug candidates for any disease or disorder, so being able to find the most important

reactions and mathematically study their behaviour analytically becomes vital.

One of the first methods to simplify the system was to use a mapping from the

continuous real world to a discrete system. Known as Boolean networks, this was done

by Kauffman in 1969 [41]. He visualized a gene as either being on or off, instead of as

a continuous range. This allows for the interactions between genes to be represented by

Boolean equations and for easy simulation of a large number of randomly constructed

networks. Using a method he refers to as the ensemble approach, he proceeded to generate

large numbers of these networks randomly and with varying network-wide parameters,

like the average in-degree, or the Boolean function bias. By examining how the dynamics

of these networks changed as these parameters changed, he deduced three realms of

discrete dynamics, the ordered, chaotic and critical realms, and deduced correctly that

the dynamically critical point occurs with in-degree k = 2, a result proven mathematically

later by Derrida in the 80s [20].

While this model has the benefits of ease of simulation and simple statistical cal-

culations of the dynamics and damage propagation, it has the major problem that the

dynamics are synchronous, noiseless and discrete, three properties that a real world ge-
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netic regulatory network simply does not have. While the results regarding them are

definitely interesting from the perspective of complexity science, they do not directly

map to the real world systems observed. To resolve this, a variety of methods have been

developed, both expanding Boolean networks to continuous, noisy or asynchronous sys-

tems [32, 63, 35] and simply converting the complex system of chemical equations within

the genetic regulatory networks into related systems of dynamical or stochastic equations

[59, 4]. The former have the problem that the system remains fairly artificial, and the

latter have the problem of commonly being too complex for analysis.

So, if an applied mathematician were to apply results from dynamical systems theory

on the entire system by creating a system of ODEs, PDEs or SDEs, they would quickly

become overwhelmed by the mass of equations. If they were to use discrete models, only

examine small subsections or study the system statistically, they end up missing impor-

tant dynamics which could be useful. Instead of trying to create a model of the system

before working with it, another method is to clearly define a particular problem which

needs to be solved and then develop a model which reflects the important dynamics,

thus simplifying the system and not missing anything important or major to that partic-

ular problem. This thesis attempts to do just this by defining the MULTISTABILITY

problem, a useful problem for drug research involving gene-gene interations, mapping

the genetic regulatory network into a statistical model of the chemical dynamics and

then further mapping that system of ODEs into a clear combinatorial problem to easier

analyze said problem.

By defining the problem first, it becomes easier to make sure the model which is

being used is capable enough to at least understand the complexity of the problem and

the difficulty of solving it. In computer science, Turing Machines were invented with the

hope of solving a problem known as the Entscheidungsproblem [15, 73]. After developing

a model of computation which was powerful enough to represent real world computation

but simple enough to mathematically analyze, this problem ended up being unsolvable.
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In the case of the MULTISTABILITY problem, which is the prime focus of this thesis,

the model on which the problem is mapped ends up demonstrating that the problem is

difficult even with heavy restrictions on the possible networks.

Even though the problem ends up being difficult, not all is lost. By mapping it to a

simpler system, it is possible to add intuitive restrictions which allow it to be solved in

certain cases and special properties of stability to be teased out of the structure of the

networks. The final chapter of this thesis offers some useful theorems showing how with

further restrictions it becomes possible to rigourously handle the MULTISTABILITY

problem and other related problems for certain genetic regulatory networks. These results

could prove useful to find possible drug targets within real-world networks, even if the

real-world networks have extra properties which are not considered in the model.

To place the MULTISTABILITY problem into context, it is useful to examine two

small real world examples where finding a MULTISTABLE subsystem provided deep

insights into human cellular behaviour. The first real world example of a MULTISTABLE

subsystem within the human genome which has massive implications for cancer treatment

and stem cell therapy is the PU.1, GATA-1 toggle switch within the haemopoetic cell

line (blood cells). These two genes, PU.1 and GATA-1, mutually repress each other’s

expression while simultaneously activating their own. The second real world example

where finding a variety of MULTISTABLE subsystems would be useful is the discovery

of the switches which can revert a mouse skin cell back to a progenitor cell (ie. a cell

that can potentially turn into any other type of cell).

The behaviour of the PU.1, GATA-1 toggle switch is believed to be essential in deter-

mining what a haemopoetic stem cell eventually turns into. When a haemopoetic stem

cell is still in a progenitor state, the PU.1, GATA-1 toggle switch lies within a very small

but stable state where both PU.1 and GATA-1 have low but relatively equal expression.

As the cells develop, other genes within the regulatory network adjust the strength of the

activation and repression for the toggle switch until their initial state becomes unstable,
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and the switch must either fall to a PU.1 high, GATA-1 low state, or a PU.1 low, GATA-1

high state. What is fascinating about this switch is that the final state it falls into de-

termines what the haemopoetic cell eventually becomes. If GATA-1 is high, the cell will

eventually evolve down the myeloetrythroid cell line becoming erythrocytes or throm-

bocytes (red blood cells), and if PU.1 is high, the cell evolves down the myelolymphoid

cell line becoming granulocytes or macrophages (white blood cells)[40]. By having the

knowledge about the switch’s existence and how it works, it becomes possible to direct

a group of stem cells to become the specific cell needed for treatment [5, 57]. Similarly,

it provides a method to force cancerous leukemic stem cells to differentiate into benign

blood cells [23].

The PU.1, GATA-1 toggle switch is not the only empirical example of a MULTI-

STABLE subsystem. In recent experimental work, a team at Kyoto University and a

team in Massachusetts succeeded in reprogramming mouse fibroblast (skin) cells to be-

come pluripotent cells. These cells are similar to embryonic stem cells in that they can

theoretically differentiate to any other cell type. [55, 77]. This was accomplished by

introducing retroviruses designed to overexpress a variety of transcription factors (Oct4,

NSox2, c-Myc, etc.) It is believed by some in the field that this overexpression has the

effect of resetting a variety of genetic switches (ie. MULTISTABLE subsystems) to re-

vert the cell to a state similar to the embryonic stem cell state. In effect, they reprogram

the cells back to their original state. The discovery of this specific combination of genes

came from previous work where they overexpressed a variety of genes seen in embryonic

and cancerous cells to see if it would generate pluripotent cells [71]. Over the course of

2007, multiple papers came out extending this work to human cells, and improving the

technique [78, 70, 53, 9, 51]. At the end of 2007, these pluripotent cells, now referred to

as induced pluripotent stem (iPS) cells, were starting to be used to develop experimental

treatments for diseases like sickle cell anemia [34].

In Takahashi’s original work, far more work was done than was needed to generate
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pluripotent cells, as Wernig, et al. showed. However, if the MULTISTABILITY problem

were to be solved and a requisite genetic regulatory network was known, it may be possible

to prune down those and save money and experimental effort. In a similar fashion, in

the spirit of the work with the PU.1, GATA-1 toggle switch, finding MULTISTABLE

switches within a larger system allows for not only the ability to reprogram a cell, but to

push it forward in a manner that a doctor would prefer for a treatment. In the case of

a cancer stem cell, push it from its reproductive state into a benign differentiated state,

or in the case of pushing a set of pluripotent cells towards a specific tissue type. These

examples will be referred to throughout the thesis to relate the mathematics to direct

biological consequences.



Chapter 2

Computational Complexity

2.1 Introduction

Informally, an algorithm is a series of instructions which, given a specific input, will

process that input in a clearly defined manner and produce a well-defined output. Ob-

viously, this definition lacks the mathematical formalism needed to do any thorough

mathematical analysis. The first attempt to formalize the concept of an algorithm was

through David Hilbert’s Entscheidungsproblem (literally “decision problem”), defined in

1928 [36]. His hope was to either discover an algorithm or prove the non-existence of

such an algorithm which, given any description of a formal language and a statement in

said language, could determine if such statement is “true” or “false” within the formal

language. Any such algorithm could essentially act as a theorem prover. If it was found,

it would completely revolutionize mathematics because mathematicians would no longer

have to prove theorems, only come up with them and test them using the algorithm. This

problem, which Hilbert was unable to answer conclusively, was solved almost a decade

later by Church and Turing [15, 73]. They showed that such a generalized algorithm

simply could not exist. Their proofs demonstrated that it was impossible to decide algo-

rithmically (ie. using a mechanical computational system) whether any given statement

within arithmetic is true or false and thus no such algorithm could exist to deal with

the generalized Entsheidungsproblem if the formal system was powerful enough to han-

dle basic arithmetic. Gödel’s incompleteness theorem, proven after this point, implies a

similar result [33].

From this work, there developed a formal definition of an algorithm. A computational

algorithm is a set of instructions which, given a specific initial state, will proceed through

7
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a series of well-defined successor states and eventually complete in a final state. Shortly

after this mathematical concept of a computational algorithm was developed, similarities

between a variety of problems were noted. Some problems ended up being uncomputable,

others required very few resources to answer, others required massive amounts, many

seemed to be easily transformed into other similar problems. After a while, it became

obvious that there seem to be many different classes of problems based on the algorithms

that could solve them and the amount of resources required they required, where resources

are either processing time or memory space required. In some circumstances, a set

of problems could be efficiently solvable, requiring few resources in time or space. In

other, less desirable circumstances, a problem would require exponential amounts of

both resources. In the worst circumstances, as it is with the Entsheidungsproblem, there

simply may not even exist an algorithm to solve it at all

2.1.1 Big-O and Big-Ω notation

Computational complexity theory developed out of this attempt to determine the amount

of resources needed to solve a class of problems. The time (space) complexity of a problem

is commonly defined as the time (space) requirements for a machine to solve said problem

using a given computational model as a function of the input size for the worst-case

instance of the problem being solved. The input size of the instance is commonly defined

as the number of characters in the formal language it requires to define an instance of

the problem completely. As this is rarely computable exactly, a type of notation known

as Big-O notation is used. This allows for the average runtime of the function to be

understood not as how many resources it takes for any given instance of the problem,

but rather how the need for resources grows as the instance size approaches infinity.

Historically, big-O notation existed before the creation of computational complexity

theory. It proved very useful in analytic number theory to simplify equations, especially

those with regards to errors in calculation. The first known presentation was by Bach-
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mann in the second volume of his book on analytic number theory [6]. About a decade

and a half later, Landau popularized it in his textbook on the math regarding prime num-

bers and hence is sometimes referred to as either Bachmann-Landau notation or simply

Landau notation [47]. With regards to computational theory, Donald Knuth provides

a useful discussion of this notation and other such asymptotic notation in the “asymp-

totic representations” section of the first volume of his work, “The Art of Computer

Programming” [45].

Big-O Notation We define the set O(f(x)), x ∈ Z, as follows

g(x) ∈ O(f(x)) as x→∞⇔ ∃n0, M ≥ 0 such that |g(n)| ≤M |f(n)|, ∀n ≥ n0

It is important to note that big-O notation can also be defined for x → a for any

a ∈ R. However, for the purposes of this thesis, this extra detail is not necessary.

Thus, when this thesis states g(x) ∈ O(f(x)), it is implied that this is for x → ∞.

Another important note must be made about the abuse of notation common within

computational complexity literature. While this thesis will use the correct notation, in

many of the papers in the literature, it is said incorrectly that g(x) = O(f(x)) when

it should be g(x) ∈ O(f(x)). Also, the use of big-O notation is helpful for algorithmic

analysis because the given big-O class of a function used for a time (space) complexity of

an problem can simply be based on the most efficient algorithm known for said problem.

This makes sense since big-O notation provides an upper-bound on the complexity of a

given problem. Another notation, big-Ω notation, is used for asymptotically defining a

lower-bound complexity for a problem. Unfortunately, these lower-bounds seems to be

much harder to prove rigourously for many problems.

Big-Ω Notation We define the set Ω(f(x)), x ∈ Z, as follows

g(x) ∈ Ω(f(x)) as x→∞⇔ ∃n0, M > 0 such that |g(n)| ≥ |Mf(n)|∀n ≥ n0
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Again, the same notational issues exist for this class of functions within the literature

as for the big-O class from above.

A commonly used example of a problem with a lower bound for complexity is the

sorting problem, given an unordered set S of elements with an ordering relationship (≤),

find a ordering T = t0, t1, ..., tn, such that ti ≤ ti+1, ∀ti ∈ S. In this circumstance, when

the computational model is restricted to comparison based sorts, any algorithm which

can solve the problem will have runtime in Ω(n log n). However, if the set being sorted

has extra properties such as the ability to sort lexicographically, it is possible to decrease

this runtime. For example, Radix sort can sort words or integers in O(n) if they have a

fixed maximum length. [46]

With the Big-O notation, and to a lesser degree, big-Ω notation, it becomes possible

to clearly define the relative difficulty of any given problem given a specific computational

model without having an exact solution. This is because big-O provides an easy-to-find

upper bound (the most efficient known algorithm), and the big-Ω provides a lower bound,

if one can be found.

2.2 Decision Problems

A major class of problems studied in computational complexity theory are problems for

which, given an instance, any algorithm will return either “accept” or “reject”. In simpler

terms, these are problems for which, given an instance of the problem, the answer is either

yes or no. In computational complexity, these problems are known as decision problems.

As an example, the problem ’given two graphs G, H , are the graphs isomorphic?’, is a

decision problem. In contrast, the problem, ’given two graphs G, H , find an isomorphism,

if one exists,’ would not be a decision problem, rather it would be what is known as a

function problem, since the answer would be the isomorphism itself. It is important

to note that while a solution to the function problem can possibly answer a related
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decision problem, the same is almost never true in reverse. It is entirely plausible that an

algorithm could exist to solve the decision problem which provides no insight whatsoever

towards solving an associated function problem.

Traditionally, a decision problem P is said to be equivalent to the set of inputs I for

P in which the given answer is a yes. This formally means that a decision problem can

be represented as a subset of the natural numbers, where the problem is rewritten as

“is a given number an element of this set?” For a decision problem where the instances

are not immediately natural numbers the equivalency is simple: Take an instance I of a

decision problem, and define an encoding onto the natural numbers, most commonly by

using a Gödel numbering. This turns the set of instances for which the given answer is

yes into a subset of the natural numbers. [33]

A couple of examples of well known decision problems include the satisfiability prob-

lem and the halting problem. The satisfiability problem is a difficult problem which will

be discussed later in this chapter. The halting problem is the problem of determining

if any given program will eventually halt or not on a given computational model. It is

similar to the Entscheidungsproblem in that it is also an uncomputable problem. This

is easily seen by the fact that if the halting problem had an algorithm that could solve

it in the general case, the question of what it would do when given itself as input is

paradoxical. Another decision problem on which this thesis will be mostly concentrating

is the MULTISTABILITY problem from genetic regulatory network studies.

2.2.1 The MULTISTABILITY Problem

The MULTISTABILITY problem is an example of a decision problem which arises in

mathematical biology. Informally, the problem is, “given a specific genetic regulatory

network, does there exist two stable states for which the network remains fixed.” As

will be discussed in the MULTISTABILITY chapter, this is not a well-defined problem

since the model used for the genetic regulatory network is not defined, and neither is
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the definition of a “stable fixed state.” Thus, as is done with almost every other real-

world problem, the system is mapped onto a reasonable model for which the problem

can be well-defined, an algorithm is built on the model and the results produced by the

algorithm are mapped back onto the real-world system and empirically verified. This

has been done successfully with many different models of genetic regulatory networks,

especially the regulatory Boolean network model and the IADGRN [43] and ARACNE

[52] algorithms for reverse engineering them.

Any model on which a problem is solved will naturally have some discrepancies with

real-world phenomena. For example, the regulatory Boolean network model can make

errors with regards to stable fixed states in very special cases when it is compared to some

of the continuous models. This is because a fixed point in a Boolean network is inherently

a stable fixed point since it is impossible to have an ǫ perturbation of the discrete state

values; only a full inversion of any node’s Boolean value is possible. However, in a

continuous model the fixed points can be both stable and unstable. Since these models

generally represent real-world interactions more closely, this leads to instances where the

Boolean network MULTISTABILITY problem would give a yes answer, while the real-

world network upon which the Boolean network is constructed does not have these stable

fixed points. Naturally, if this problem became endemic, it would make it difficult to apply

any algorithm based on the this model to real-world biological science or medicine.

Why is solving this problem useful? If the model is good enough, it provides a way

to scan through a given genetic regulatory network for subnetworks that potentially

act as important switches. A good idea of which subnetworks within a larger network

could possibly act as switches would provide the ability to target said networks with

drugs or another appropriate differentiation therapy. It is believed that these multistable

“switches” are important for determining cell types, maintaining cell state, and could

perhaps be even involved with the creation and evolution of cancer. This was seen with

the PU.1 and GATA-1 switch for haemopoetic cell linages. The ability to find them
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rapidly and target them would be priceless for finding potential drug candidates, as well

as provide a new method to determine the current state of a given cell without using

morphometric parameters. Similarly, it would also be useful for stem cell research by

helping direct differentiation down desired pathways to produce the desired tissues or

organs for transplant.

It is important to note that any solution to the MULTISTABILITY problem would

only tell whether or not multiple stable states exist. A solution to the problem of defining

what the stable fixed points are for a given genetic regulatory network would naturally

be even more valuable. However, even though this is more useful than the simple decision

problem, it adds a significant level of complexity to the problem and thus any algorithm

built to solve it. There do exist some algorithms that perform similar tasks but they are

either not tractable for large networks (the best known algorithms run in O(1.19n) time,

or only work efficiently on a small subset of the problem space [21, 79]. Since the decision

problem is simpler and no polynomial time algorithm is known for it, the complexity of

the decision problem and some heuristics to approach it are examined in this thesis.

2.3 Turing Machines

To clearly define the important complexity classes for this thesis, it is necessary to define

the abstract computational model upon which the algorithms will be run, and with that

model, define the concepts of space usage and time required to run the algorithm. There

are a variety of abstract computational models which can be used, but the most popular

of them is currently the Turing machine model. In this thesis, this will be the primary

model used when a model is needed. Created in 1936 by Alan Turing [73], it was intended

not to be constructed as described but rather a theoretical model designed to find the

limits of what can be effectively computed mechanically. He hoped to create what is

referred to as a “universal computer,” a computer which is capable not only of running
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algorithms, but simulating any other machine that can also run algorithms. He described

this idea in his paper [73].

It is possible to invent a single machine which can be used to compute any

computable sequence. If this machine U is supplied with the tape on the

beginning of which is written the string of quintuples separated by semicolons

of some computing machine M, then U will compute the same sequence as

M.

In this statement is the essence of the Church-Turing thesis. Turing believed, and it is

now generally accepted, that any computational machine can be simulated by this Turing

Machine concept. Thus, his machine is literally a universal computing machine. In its

time, this was a radical concept. However, today this fact is accepted even though it has

not been and may never be rigourously proven. He had developed a machine which was

simple enough to be abstracted out with mathematical rigour but believed to be capable

of doing any computation that any real-world machine could do.

The original machine Turing described was not originally referred to as a deterministic

Turing machine. However, as time progressed, other types of Turing machines were

developed which changed some aspects of the original Turing machine in subtle ways

in order to achieve higher efficiency or in an attempt to disprove the Church-Turing

hypothesis. In almost all cases, the deterministic nature of the machine was modified

in some fashion. Thus, Turing’s original design is now more accurately referred to as a

”deterministic Turing machine,” in reference to the deterministic nature of the transition

function used to determine the next action for the machine.

As noted, there are many variations of Turing machines, such as the “non-deterministic

Turing machine” which has the property that the transition function is a multivalued

function. It is known that a “non-deterministic Turing machine” can be simulated by a

“deterministic Turing machine.” Another common type of Turing machine is the “prob-
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abilistic Turing machine.” This machine has the property that it chooses between transi-

tion functions based on some probability distribution. If it is accepted that deterministic

algorithms exist which can generate perfectly random numbers, then these can also be

simulated on a deterministic Turing machine. In both cases, the original Turing Machine

remains universal, if somewhat less efficient in resource use than its counterparts [56].

Even a Turing machine based on quantum mechanical principles can be simulated by a

deterministic Turing machine given enough resources [12].

2.3.1 Deterministic Turing Machines

A deterministic Turing machine is what most people think of when they refer to a classical

Turing machine. Mechanically, a Turing machine is a machine consisting of four primary

parts:

1. A table of instructions which tell the machine what to do given the state that it

currently is in.

2. A tape of infinite length in both directions.

3. A head which can move back and forth on tapes and read and write symbols.

4. A state register which stores the current “state” of the Turing machine.

The number of possible states is finite, as is the language of symbols that can be

written on the tape. However, the tape itself is infinite. Thus, even though the number

of states and symbols is finite, it remains possible for a program to run forever without

ever having the Turing machine, as a whole, repeat itself. Figure 2.1 shows a simplified

representation of the essential mechanical parts of a deterministic Turing machine.

Mathematically, a deterministic Turing machine is defined as a 6-tuple, M = (Q, ǫ, Σ, δ, q0, F )

where each of the objects are defined as follows. This definition is similar to Hopcroft and



16

(α,1,0,__,β)β
α

γ

µ

ν

δ
εη

ω

ξ

χ State
Register

4

Tape

Read/Write Head

3

2

1
Instruction Table

(α,0,0,−>,α)

(β,0,1,−>,ε)

(γ,1,0,−>ξ)
(µ,0,0,<−,α)
(µ,1,0,<−,µ)

(γ,0,1,__,γ)
(β,1,1,<−,δ)

Figure 2.1: A deterministic Turing machine

Ullman’s definition. However, this definition notably omits the “set of input symbols”

which is the computer alphabet less the blank symbol [37].

1. Q is a finite set of states

2. Σ is the computer’s alphabet

3. ǫ ∈ Σ is the “blank symbol”

4. δ : Q × Σ → Q × Σ × {L, R, N} is the transition function, where L = move tape

left, R = move tape right, N = no shift.

5. q0 is the initial state

6. F ⊆ Q is the set of possible final sets (ie. the states where the computation stops

and returns some final value.)

Since a Turing machine is believed to be universal by the Church-Turing thesis, any

mechanical computation which can be performed is believed to be possible on a Tur-

ing machine. However, any calculation may not be as efficiently computed when it is

simulated on a Turing machine. Instead of dealing with efficiency, the Turing Machine
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provides a tool to determine if it is even possible to perform a certain computation me-

chanically, since if the Church-Turing thesis is believed, then if it’s impossible to do with

a Turing machine, it’s impossible to do. While it is not the most efficient of mechanical

computation devices, at this point in time, no known physical device not using quantum

mechanics is capable of operating more efficiently than a deterministic Turing machine

in any significant asymptotic fashion on the size of the input. So, even though there

exist theoretical devices which seem to be more efficient, the Turing machine is a good

model of computation for determining the relative difficulty of computing solutions to

problems.

2.3.2 Non-deterministic Turing Machines

A non-deterministic Turing machine is another theoretical construction of a computa-

tional device. The primary difference between a deterministic Turing Machine and its

non-deterministic counterpart is that the transition function of a non-deterministic Tur-

ing machine may be multivalued. Physically, it is not easy to intuit what this means.

Some academics describe the machine as a branching process where every time a tran-

sition function has more than one output, the computer makes multiple copies of itself

each following one of the outputs. Thus, while a deterministic Turing machine has a clear

computational path, a non-deterministic Turing machine has what could better called a

computational tree. This can be seen in figure 2.2. In the figures, each edge represents a

path for the transition function, and each node the current set of states for the machine.

While this description is apt, another somewhat more intuitive way of understanding a

non-deterministic turing machine is to say the machine is a “perfect guesser” and must

always choose the transition which leads to an accepting state, if one exists. If one does

not exist, it chooses any random transition [28].

As discussed before, this Turing machine is computationally equivalent to the de-

terministic Turing machine, since a deterministic Turing machine can simulate a non-
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Figure 2.2: A deterministic computation path and a non-deterministic computation tree

deterministic Turing machine and vice versa. However, a large class of problems are

believed to be more efficiently solved on this machine than on a deterministic Turing

machine. While Savitch demonstrated that any simulation of a non-deterministic Turing

machine by a deterministic one will require at most a square of the non-deterministic

space requirements [61], it is believed that any simulation will require exponential time.

However, this belief has not been formally proven. A simple, however non-rigourous,

argument in favour of this conjecture is the fact that a nondeterministic Turing machine

is able to search an indexed set of size 2n in n steps, by utilizing the branching nature of

its processes.

Non-deterministic Turing Machines have another property in that their non-determinism

is bounded non-determinism. This implies that the multivalued function has a finite num-

ber of possible transitions. This is inherent in the fact that the transition function can

only have a finite set of values since the alphabet, states, and possible head movements

are all finite. This is fundamentally important for the non-deterministic turing machine

to be realistic since if the non-determinism were unbounded, the halting problem would

become solvable [67].
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2.4 Complexity Classes

A complexity class is a group of problems which are solvable given a specific Turing

machine model and a limited amount of resources based on the input size of any given

instance. There is an entire zoo of complexity classes, each of which is interesting in its

own right [1]. However, this thesis will concentrate on the most common and popular

complexity classes: P (Polynomial), NP (Non-deterministic Polynomial) and PSPACE

(Polynomial Space) and the various classes associated with them.

2.4.1 Polynomial Reduction

Polynomial reduction is a mathematical ordering which can exist between two given

problems. Sometimes it is possible to take an instance of one problem and transform it

into an instance of a more easily solved problem (or a problem for which an algorithm

already exists). Now, if such a transformation requires very few resources, then the

difficulty of the first problem can be seen as being at most as difficult as that of the

second problem into which it is transformed, since a solution to the second problem

would imply a solution to the first problem, and not vice versa.

Formally, given two decision problems S, T, S ≤P T or, equivalently, S polynomially

reduces to T , if there exists an algorithm f requiring polynomial resources (i.e., its

runtime is in O(p(n)) for some polynomial p(n), which takes an instance i ∈ S and maps

it to an instance j ∈ T , such that i is true for S, if and only if j = f(i) is true for T. It is

useful to note that this need only be a one-way function and thus a one-way reduction.

2.4.2 P

The acronym P stands for “deterministic Polynomial,” or simply “Polynomial.” It is the

class of problems for which there exists an algorithm which can solve the problem using

a polynomial number of resources on a deterministic Turing machine. This implies that
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given an instance I of size |I| = n, there exists an algorithm for which the runtime will

be f(n) ∈ O(p(n)) for some polynomial p(n). Note that this does not immediately imply

the problem is easily solved, as for large instances the polynomials p(n), q(n) can be of

very high degree. It does, however, imply that the difficulty of the problem does not grow

exponentially on the size of the instance, which means that the computational resources

needed are likely to be reasonable. While not entirely accurate, if a problem lies within

P, it is said to be an easy or efficiently-solvable problem.

Some examples of problems that lie within P include finding the shortest distance in

a graph [22], determining if a number is prime [2], linear programming [44] or finding

a maximum matching [24]. For all of these problems, there exist known algorithms for

which the resource usage is polynomial. Most problems known to lie in P have this

property. Yet, there do exist a few problems for which a polynomial time algorithm

has been proven to exist, but no algorithm is currently known, i.e., a non-constructive

proof of the existence of such an algorithm is known, but the exact algorithm which is

polynomial in resources is not. For example, the Robertson-Seymour theorem [49] implies

the existence of an algorithm with runtime O(n3) for determining if a graph is part of a

given downwardly closed set of graphs, such as planar graphs on the surfaces of various

objects, will exist [8]. However, the actual algorithm for any given set is not immediately

known.

In comparison, an example of a problem known not to lie in P is the problem of

whether a given algorithm will halt on a Turing machine in k steps or less; this problem

is known as the “bounded halting” problem [50]. This lies in a complexity class known

as EXPTIME, the class of problems for which it takes an exponential amount of time

given the input to run, and not P. To see this, it is important to remember that the

runtime is given as a function on the size of a given instance. Since the number k can

be encoded in log(k) bits, the instance size is |I| ∈ O(log(k)). To answer the “bounded

halting” problem, the algorithm is run for k steps, and it is determined if it halts. Since
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it requires O(2|I|) time, an exponential time is required. Thus, it lies in EXPTIME and

not in P.

2.4.3 NP, NP-Complete, and coNP

The acronym NP stands for “Non-deterministic Polynomial”. It is the class of problems

for which there exists an algorithm which can solve the problem using a polynomial

number of resources on a non-deterministic Turing machine. As with the P complexity

class, this implies that given an instance I of size n, there exists an algorithm for which the

runtime is f(n) ∈ O(p(n)) for some polynomial p(n). Contrary to popular mathematical

parlance and myth, this does not imply that the problem lies in “not-polynomial.” If it

were ever proven that a problem lying in NP will have all algorithms’ runtimes in a big-Ω

class like Ω(2n), then this would be resolved as it would imply P 6= NP . Similarly, if

a special type of NP problem called a NP-Complete problem were to lie in P as well,

then P = NP [16]. There has been some work on this problem using models where it

is assumed a specific polynomial time algorithm exists, without defining said algorithm.

For some models, P = NP and for others, P 6= NP [7]. However, at this time, there has

been little clear progress in either proving or disproving this conjecture in the general

case.

When a problem C is said to be “complete” in its complexity class, it means that

there exists a polynomial reduction from any other problem P in that class to C. Thus,

if a polynomial algorithm is known to solve C, a polynomial algorithm can be derived to

solve any problem P in the entire complexity class. Commonly, given a complexity class

K, the set of all complete problems in that class form a class known as K-Complete. So,

for NP, the set of all complete problems in NP form the class NP-Complete [28]. It is

useful to note that there do exist complexity classes for which no there are no complete

problems [65].

The current believed relations between P and NP can be seen in figure 2.3. In it, all
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problems contained within P are inherently contained within NP as a non-deterministic

Turing machine can do everything a deterministic one can, and it is assumed that

NP 6= P . This is from the fact that there are many well studied problems contained

within NP for which no polynomial algorithm is known to exist, such as the graph isomor-

phism problem, the Boolean satisfiability problem and the Hamiltonian path problem,

the problem of finding a tour in a graph which touches all vertices only once [28]. This

seems to imply a high level of difficulty for problems which are NP and have not yet

succumbed to a polynomial algorithm.

From an efficiency standpoint, it is easy to see that if a problem is complete within

its complexity class, then any algorithm which solves said problem must be at least as

time or space intensive as any other problem within said complexity class. For this

reason, if a problem lies within the class of complete problems in NP, NP-Complete, then

it is generally believed to not have a polynomial time algorithm. This is regardless of

the lack of a formal proof that P 6= NP . NP-Complete contains such a wide variety of

difficult decision problems which have not succumbed to any attempt to find a polynomial

algorithm, that it is generally accepted if a problem is proven to be NP-Complete then

the problem is not tractable in its current form. When this occurs, most experts resort

to heuristics to find approximate solutions or restrictions of the original problem space

in the hopes that by restricting it the problem will make it tractable.

A special property of the NP complexity class is that for any given decision problem,

if the answer is affirmative, there will exist a polynomially sized “proof” which can

be checked in polynomial time [28]. From the perspective of the process tree method

of understanding non-deterministic Turing machines, the “proof” is the specific set of

branches for the machine to take which will reach a valid accepting state. So, given any

instance of a problem without this extra bit of information, the problem seems to be very

difficult. However, with the extra information from the “proof,” it is trivial to check to

see if the instance will be accepted or not. Commonly, this method is used to determine if
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a problem lies within the NP complexity class, since if it can be easily verified to be valid

given a polynomial sized proof string, then it must lie within NP. Thus, NP problems can

be seen as problems with finding the existence of such a ”proof” within some proof-space.

For example, the Hamiltonian path decision problem lies within NP, since the easily

verified proof of the existence of such a path would be the path itself. For any NP

problem, the proof space will be known and provides a clean method for determining the

solution to an instance through brute forcing all possible proofs for that instance of an

NP problem and rejecting if none are found. With some effort, it is possible to see that

such a proof-space will be finite but exponential based on the number of multivalued

transitions. Obviously, testing every proof in the space is inefficient, but possible. With

such an algorithm, if a proof exists, then the instance of the problem will eventually be

accepted. If not then it is rejected after exhausting the proof-space. For the Hamiltonian

path problem, given an instance of a graph G with n vertices, the proof-space would

be every single path of length n. Once a Hamiltonian path is found, it is easy to show

someone that the graph has such a path by simply providing them with the one which

was found.

2.5 The Boolean SATISFIABILITY Problem

An essential decision problem to computational complexity theory is the Boolean SATIS-

FIABILITY problem. This problem has the unique property of being NP-Complete, and

was the first problem ever discovered to be so. In fact, all other NP-Complete problems

are proved to be so through polynomial reduction from the satisifiability problem. The

satifiability problem is as follows:

Boolean SATISFIABILITY Problem Given a Boolean expression written using NOT,

the Boolean conjunctions AND and OR, a finite set of variables and appropriate paren-

theses, does there exist a Boolean assignment to the variables for which the Boolean ex-
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pression will evaluate as 1? In logic language, does there exist an assignment of “TRUE”

and “FALSE” to the variables for which the expression remains “TRUE?”

For the purposes of clarity, this thesis will refer to the Boolean SATIFIABILITY

problem as the SATIFIABILITY problem from this point forward. Here is a simple

example of what an instance for the SATISFIABILITY problem would look like (using

logical notation):

I = (x1 ∨ x2 ∧ (¬x1 ∨ x5) ∨ (¬(y ∨ x6))), {x1, x2, x5, x6, y}

In this example, there are a variety of valid values for the variables (x1, x2, x5, x6, y).

Notice that the instance also includes the list of variables valid for that instance, as there

could be variables included that are not incorporated in the Boolean expression. While,

doing this would be useless, it is not outside the definition of the SATISFIABILITY

problem.

It is fairly clear that this problem will lie within NP since the Boolean assignment

of the variables is going to be polynomial in size compared to the instance, and can act

to show that the system has a assignment which is accepted (i.e. a proof). However, the

fact that it is complete in that complexity class is not as clear. The following theorem

is by far the most important theorem in the field of computational complexity. It is the

first non-trivial completeness proof and provides a base to determine if other problems

lie within the NP-Complete complexity class.

Theorem 2.5.1 (Cook-Levin Theorem). The SATISFIABILITY problem is NP-Complete.

Proof. This proof can be located in Garey and Johnson’s book, “Computers and In-

tractability: A guide to NP-Completeness” [28].

To make it simpler to deal with the SATISFIABILITY problem, it is useful to use the

set of subproblems where the Boolean expression is restricted to the conjunctive normal
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form with clauses of a specific length, k. These problems are known as k-SAT problems,

and provide an infinite set of subproblems to SATISFIABILITY, which when combined

together form the SATISFIABILITY problem space.

k-SAT k-SAT is a subset of the SATISFIABILITY problem, where the Boolean ex-

pression is written in the conjunctive normal formal with each clause having at most k

elements. This means that the Boolean expression has the following form, where aij is a

Boolean variable or a negation of a Boolean variable and it is possible for a variable to

appear multiple times in any part of the expression.

(a11 ∨ a12 ∨ . . . ∨ a1k) ∧ (a21 ∨ a22 ∨ . . . ∨ a2k) ∧ . . . ∧ (an1 ∨ an2 ∨ . . . ∨ ank)

Note that
⋃∞

k=0 k-SAT = SATISFIABILITY, as any SATISFIABILITY problem can

be easily rewritten into the conjunctive normal form. In fact, it is possible to polynomially

reduce any k-SAT problem to a 3-SAT problem making 3-SAT a small NP-Complete set.

Note that, while 3-SAT is NP-Complete, 2-SAT lies within P and if it is believed that

P 6= NP , then 2-SAT cannot be NP-Complete.

The following proof demonstrates how polynomial reducibility can be used to prove

the NP-completeness of a decision problem.

Theorem 2.5.2. 3-SAT is NP-Complete

Proof. To prove that 3-SAT is NP-Complete, we will take a generalized instance of SAT-

ISFIABILITY and map it to 3-SAT.

Given an instance of SATISFIABILITY written in conjunctive normal form, I =

{C0, C1, . . . , Cn}, {x0, x1, . . . , xm}, where Ci are the clauses and xi are the variables, there

will be 3 different types of clauses which will need to be converted to clauses of length 3.

The clauses that are already of length 3 do not need to be converted.
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1. If Ci is a clause of length 1. Then Ci = xj for some j. It is possible to replace Ci

with a set of 4 new clauses which are satisfiable if and only if Ci is satisfiable by

adding 2 new variables yi1, yi2.

C ′
i1 = (xj∨yi1∨yi2), C

′
i2 = (xj∨¬yi1∨yi2), C

′
i3 = (xj∨yi1∨¬yi2), C

′
i4 = (xj∨¬yi1∨¬yi2)

2. If Ci is a clause of length 2. Then Ci = (zj ∨ zk) for some zj , zk representing the

variables in normal or negated form. By adding a new variable yi, it is possible

to replace Ci with two clauses of length 3 which are satifiable if and only if Ci is

satisfiable.

C ′
i1 = (zk ∨ zk ∨ yi), C

′
i2 = (zk ∨ zk ∨ ¬yi)

3. If Ci is a clause of length k, k > 3, Ci = (z1, z2, . . . , zk). Then it is possible to

create a set of k-3 new clauses of length 3 which are satisfiable if and only if Ci is

satisfiable. First it is necessary to add k− 3 new variables, {yi1, yi2, . . . , yi,k−3} and

replace Ci with the following set of clauses.

C ′
i1 = (z1, z2, yi1), C

′
i,l = (¬yi,l, zl+2, yi,l+1)∀1 < l < k − 3, C ′

i,k−3 = (yi,k−3, zk−1, zk)

With these conversions, we now have a 3-SAT problem which is satisfiable if and only

if the original problem is satisfiable. However, it is necessary to show that this reduction

is a polynomial reduction based on the size of the instance |I| = n + m. Let n1 be the

number of clauses of length 1, n2 be the number of clauses of length 2, n3 be the number

of clauses of length 3, and nk be the number of clauses of length k > 3. It is clear that

n1 + n2 + n3 + n4 = n. Let n′ be the new number of clauses and m′ be the new number

of variables.

Now for the n1 clauses of length 1, there are 2 new variables and 3 extra clauses. So

the 3-SAT reduction produces n1 ∗ 4 clauses and at most n1 ∗ 3 variables. Similarly for
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n2, there are now n2 ∗ 2 clauses and at most n2 ∗ 3 variables. For nk the solution is a bit

more complicated, so to make it clearer it is useful to use big-O notation. Let K > 3

be the size of the biggest clause in the instance. So, all other clauses will increase the

size by less than the amount this clause increases the system. So, for k > 3, there are

now 2k − 3 variables and k − 3 clauses. Since K is the largest possible K, there are

now at most nk ∗ (2K − 3) variables and nk ∗ (K − 3) clauses. It is easy to see that if

K > 3, then the entire systems growth is bounded above by by n ∗ (2K − 3) variables

and n ∗ (K − 3) clauses. Therefore the reduction is O(n). Thus this is a polynomial

reduction of SATISFIABILITY to 3-SAT and since SATISFIABILITY is NP-Complete,

this implies that 3-SAT is NP-Complete.

Using 3-SAT, it becomes possible to prove that other problems are NP-Complete

without having to use the complicated techniques developed to prove that SATISFIA-

BILITY was NP-Complete. With 3-SAT as an established NP-Complete problem, any

problem to which it polynomially reduces must also be an NP-Complete problem. This

is due to the fact that any concatenation of two polynomial reductions produces yet

another polynomial reduction. In fact, if a tree were to be drawn regarding the known

NP-Complete problems, the root of the tree is the SATISFIABILITY problem with a

majority of the problems coming off of the initial 3-SAT branch of the tree [28]. In

the MULTISTABILITY chapter of this thesis, 3-SAT will be used to demonstrate the

difficulty of this problem in the general case.

Another important complexity class related to NP is the coNP complexity class. From

a decision problem viewpoint this is the inverse problem. So, for a given SATISFIABIL-

ITY problem, the related co-NP problem would be “does this SATISFIABILITY problem

have no Boolean string such that it equals zero?” Unlike the NP problem where simple

existence is needed to validate whether the problem is true or not, the coNP problem

requires universality, i.e., all possible answers must return “reject,” and thus fail to work.
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2.6 PSPACE

One last complexity class completely rounds out this family of polynomial complexity

classes: PSPACE. This is the class of all problems which are solvable using a polynomial

number of resources, but an unlimited amount of time. Within this class, lie the classes

P, NP, and coNP. While it initially seems that this problem would not be directly related

to P, NP and coNP, there is a very fascinating connection between their primary complete

problems. NP-Complete becomes a question of the existence of a proof, coNP-Complete

is a question of the universality of a statement, and PSPACE is a question of universality

for a given subset.

There is an interesting logical way to represent the complete classes for NP, coNP, and

PSPACE using equivalent satisfiability problems. The NP-Complete class is represented

by the SATISFIABILITY problem, given a Boolean expression B, ∃X ∈ {0, 1}n where B(X) =

1. The coNP-Complete class by, given a Boolean expression B, ∀X ∈ {0, 1}n where B(X) =

1. PSPACE-Complete class is represented by, given a Boolean expression B, ∃Y0 ∈

{0, 1}n0, ∀X0 ∈ {0, 1}m0 , ∃Y1 ∈ {0, 1}n1, ∀X1 ∈ {0, 1}m1, . . . , ∃Yk ∈ {0, 1}nk, ∀Xl ∈

{0, 1}ml where B(X, Y ) = 1, X = {X0, . . . , Xl}, Y = {Y0, . . . , Yk}. Thus, PSPACE-

Complete problems end up being a combination of coNP-Complete and NP-Complete

problems. Thus, naturally, NP, coNP ⊆ PSPACE [28]. However, as discussed before,

the strictness of the inclusion has not yet been proven.

2.7 Relationships between the classes

Figure 2.3 shows the current believed relationships between the classes of P, NP, coNP,

PSPACE, PSPACE-Complete, NP-Complete, and coNP-Complete.

While the strictness of the inclusions within figure 2.3 have all not been proven, the

figure assumes that NP 6= P , PSPACE 6= NP , coNP 6= NP . This is why the complete

subclasses are shown as separate from the other subclasses for each complexity class. Eg.
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Figure 2.3: Believed set relations between complexity classes related to P, NP and
PSPACE

NPC is shown as not being within or even intersecting P.

If it turns out that P = NP , then coNP = NP , because coP = P . Similarly, having

PSPACE = NP would imply coNP = NP , and collapse a significant portion of the

hierarchy. It is believed amongst a good portion of computational complexity theorists

that P = NP ∩ coNP . However, there is no solid proof of this as of yet. Any results or

development to refine this diagram to be more rigourous would be priceless for furthering

the understanding of tractability and “efficient” complexity classes.



Chapter 3

Continuous Models of Genetic Regulatory Networks

3.1 Introduction

Stuart Kauffman developed the Boolean network model for genetic regulatory networks

in the late 1960s and proceeded to demonstrate interesting ensemble properties of the dis-

crete dynamics of the model. The simplicity of his model allowed for potential qualitative

features for certain Boolean network dynamics to be teased out of the structure of the

system [64, 20, 41, 42, 60, 66]. From these features, it became possible to intuit ensemble

dynamic features of genetic regulatory networks to test empirically, assuming that the

system dynamics can be reasonably represented by a discrete synchronous system.

Unfortunately, even though Boolean networks can provide some intuition, genetic

regulatory networks are fundamentally not discrete synchronous systems. Therefore, ap-

plying any qualitative behaviour about ensemble Boolean network dynamics to genetic

regulatory dynamics must be considered carefully. Therein lies the biggest fundamental

difficulty when creating any model, especially models of a genetic regulatory network.

Creating a model requires finding a balance between model simplicity and conformity to

real-world phenomena. I.e., keeping the model simple enough to derive rigourous con-

clusions from it and ensuring that the model is accurate enough to be representative of

a real-world genetic network, especially if said model is to be used with any algorithms

designed to determine qualitative properties of the real-world system like MULTISTA-

BILITY or finding attractors.

To create a useful model of a genetic network, it is necessary to understand the

biology of cells [3] and the biology of genetic regulatory networks [10]. Specifically, we

need to know which features of the biology have the largest effects on the qualitative

30
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behaviour of the dynamics. These will be shown to be the gene expression and the

activation and repression thereof. Once this is identified and understood, a model can

be created using a few methods. A simplified set of chemical master equations can be

written providing the expression, activation and repression. From these equations, either

the Gillespie algorithm can be used to simulate the chemical dynamics [59], or a Mean

Field Model approach can generate an associated system of ODEs [4]. Another method

ignores the chemical master equations entirely and instead directly represents activation

and repression with hill or Heaviside functions in a system of ODEs representing gene

expression [32].

3.2 Biology of Genetic Regulatory Networks

The eventual growth, differentiation, and behaviour of a cell is strongly affected by its

internal molecular chemistry and dynamics [80]. The interactions between various pro-

teins, mRNA, DNA, and other organic molecules direct the cell to behave in a variety

of ways. In fact, there is strong evidence that the eventual cell fate is almost entirely

controlled by switches created by genetic interactions [38]. However, understanding and

modeling all of the molecular interactions of a cell is an immense task due to the sheer

variety of possible organic molecules and the exponential nature of their interactions.

Due to this complexity, it becomes necessary to study subsystems which can be easily

modeled. One subsystem which is becoming popular for studying long-term dynamics of

a cell is the interaction between genes and their constituent proteins. This is commonly

modeled as a regulatory network where each gene has a given expression value based

on their associated protein concentration, and those concentrations either repress or

activate other genes [10]. This chapter will provide demonstrative examples by using

the PU.1, GATA-1 example from the introduction. As a reminder of how this example

works, PU.1 and GATA-1 are both genes that mutually repress each other’s expression,
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Figure 3.1: Transcription and Translation

while simultaneously being self-activating. What is meant by expression, repression and

activation will be explained chemically further on in this chapter.

3.2.1 Gene Expression

In a cellular context, a gene is a strand of DNA containing a promoter and coding

and non-coding sequences. This can be seen in figure 3.1a. When a gene is expressed

or active, the coding and non-coding sequence are copied, using a specialized promoter

region for that gene, into RNA strands. These RNA strands can theoretically affect many

aspects of a cell’s behaviour and function. In the case of the genetic regulatory network

model, the only RNAs considered are those which are involved with the production of

the associated proteins to the gene. These RNA molecules, known as messenger RNA

or mRNA, interact with the available ribosomes and create proteins that are directly

related to the gene which produced the mRNA. The mRNA and proteins can be seen in

figure 3.1b.

So, a common way that a gene expresses its current “state” is by what are referred to

as the processes of transcription and translation as shown in a simplified form in figure

3.1, where transcription is the production of an associated mRNA from a gene, and

translation is the chemical reaction of mRNA with ribosomes to produce an associated

protein to the gene. In chemical reaction notation, transcription and translation are as
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follows.

For transcription, there are a variety of intermediary chemical reactions, represented

here by C1, C2, . . . , Cn. However, in most cases it is perfectly valid to simplify as in

(3.2), where the transition is marked from the first reaction to the final one and the

intermediate reactions are ignored. Pm represents the promoter region of the genome at

gene m which initiates the transcription.

RNAp + Pm → C1 → C2 → . . .→ Cn → RNAp + Pm + mRNAm (3.1)

RNAp + Pm → RNAp + Pm + mRNAm (3.2)

Translation commonly occurs directly from the interaction of the mRNA molecule

with the ribosomes to produce proteins. Chemical equation (3.3) shows how this works.

The Ribosomes within the cell interact with the mRNA in such a fashion that they

produce a protein copy of the information from the mRNA. In the chemical equation,

Mn is the associated protein created for gene n, given the mRNAn from gene n.

Ribo + mRNAn → Ribo + mRNAn + Mn (3.3)

While these chemical reaction equations are important to a chemical definition of a

genetic regulatory network, these reactions are not the only important reactions. Without

decay or degradation of the mRNA and proteins, the system will very quickly use up all

available resources permanently. So, it is easy to see that the degradation of the mRNA

and proteins will happen at some constant rate k ≥ 0. Thus, we can define the chemical

reaction equations for the decay of the proteins and the mRNA. Note, the Ribosome

decay is not considered simply because it is assumed that there are more than enough to

maintain the reaction at all times, and the promoter region also doesn’t decay since that
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would imply that the DNA itself was breaking apart.

mRNAm → ∅ (3.4)

Mm → ∅ (3.5)

From the perspective of the PU.1, GATA-1 system example, the equations needed

would be the equations for the expression of the PU.1 gene, as follows:

RNAp + PPU.1 → RNAp + PPU.1 + mRNAPU.1

Ribo + mRNAPU.1 → Ribo + mRNAPU.1 + Mn

mRNAPU.1 → ∅

MPU.1 → ∅

The chemical reactions for GATA-1’s expression are the same. If this were the entirety

of the biochemical system, the equations would imply that MPU.1 (and MGATA-1), the

value we consider more important for representing gene expression, would simply reach

a equilibrium point based on the various reaction rates and the system would quickly

settle into a chemical equilibrium state. Obviously, it is necessary to add more chemical

interactions.

3.2.2 Multimerization

Another important interaction within a cell is multimerization. This is when two proteins

combine together to form what is referred to as a multimer. Commonly, this occurs

between protein molecules of the same design. When this occurs between two proteins

of the same construction, they are referred to as homodimers. When there are three or

more of the same construction, they are commonly referred to as homomultimers. On the
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rare occasion, two or more protein molecules of different constructions combine. Again,

when this occurs for two non-related proteins, they are called heterodimers, and for three

or more, heteromultimers.

Dimerization can be represented by the balanced chemical equation (3.6). Multimer-

ization is the natural extension of this equation. (⇋ implies that the chemical reaction

is bidirectional)

Mi + Mj ⇋ MiMj (3.6)

In most biochemical systems, it is believed that the dynamics could be heavily influ-

enced by homodimers in order to handle the intrinsic noise from the biochemical reactions

[11]. In the PU.1, GATA-1 example, since the switches behaviour is stable, it is reason-

able to assume that the proteins combine into homodimers. While this has not been

empirically verified for this specific example, it is not unreasonable to believe that this

is true. Thus, the PU.1, GATA-1 system will have the following chemical reactions in it:

MPU.1 + MPU.1 ⇋ MPU.1MPU.1

MGATA-1 + MGATA-1 ⇋ MGATA-1MGATA-1

3.2.3 Activation and Repression

With the above chemical equations (3.2) - (3.6), it is possible to define the behaviour

of the most simple of genetic regulatory networks. Specifically, those which express

themselves through protein production and potentially have their proteins interact to

form larger compounds in some fashion. While this is useful, not very much happens in

the way of dynamics for this system of equations simply because the proteins generated

do not interact with each other in any way.

Simply put, a system consisting of purely gene expression without some form of

regulation has no interesting dynamics. A common intuitive way to implement gene-
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Figure 3.2: A protein binding to the promoter to cause repression

gene interaction is to have the expression of one gene repress or activate the expression

of another gene. In fact, it seems that activation and repression are the most common

methods that one gene’s expression affects the dynamics [17]. In both circumstances the

expression of one gene’s proteins either directly, or through an intermediary multimer

containing said protein binds to a promoter related to another gene. By binding to this

site, the protein either reduces transcription of the associated gene’s protein, a process

known as repression, or chemically acts in a fashion similar to a catalyst by increasing

the production of the protein, a process known as activation. By reducing the amount of

mRNA created through transcription, it naturally reduces the equilibrium concentration

of the related protein, thus decreasing expression. This can be seen in figure 3.2

Chemically, we can represent repression by having a given multimer D bind to the

promoter Pn related to the transcription equation from before. Hence, the availability of

the promoter Pn, needed for transcription, decreases. As Pn decreases, the equilibrium

of the transcriptional equation decreases, and thus the production of proteins for the

associated gene similarly goes down. Chemically, this is represented as follows in equation

(3.7) (Where D is the multimer and Pn is the repressed promoter region.) Since the dimer

can attach or detach from the promoter region, this chemical reaction is bidirectional.

Pn + D ⇋ PnD (3.7)

For activation, the promoter region will be bound to as above. However, instead of

decreasing the production of the associated mRNA to 0, it will increase transcription

by a value larger than the initial rate in the transcription equation. Thus, chemically,

activation will require the above repression to produce the promoter-multimer pairing
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and the following chemical master equation, with a higher reaction rate than the original

equation.

RNAp + PnD→ RNAp + PnD + mRNAn (3.8)

In general, while it is possible for a single protein to bind to such a site, it seems

as though the most important gene-gene interactions are caused by homomultimers,

especially homodimers. Monomers are less able to deal with the intrinsic noise in the

system [11] and heteromultimers are not commonly seen in experiment. Thus, even

though a complete model would naturally include the full catalogue of monomers and

heteromultimers, it is perfectly understandable when looking for multistable states to

simplify the genetic regulatory network model by only looking at repression and activation

caused by homodimers. However, any predicted result by a simplified model would need

to be tested in a lab to ensure that the results are not complicated by any unexpected

interactions. Thus, for the purpose of simplicity, this thesis will view all repression and

activation as being caused solely by homomultimers, specifically homodimers.

So, in our PU.1, GATA-1 example, since PU.1 represses GATA-1 and vice versa, and

this thesis assumes the repression is caused by the homodimers, the following chemical

equations are added to the system to represent the mutual repression of these two genes.

PPU.1 + MGATA-1MGATA-1 ⇋ PPU.1MGATA-1MGATA-1

PGATA-1 + MPU.1MPU.1 ⇋ PGATA-1MPU.1MPU.1

As well, since PU.1, and GATA-1 are self-activating, the following equations must

also be within the set of chemical reactions. Note that for them to be self-activating, the

rate of reaction, which is not currently included with the equations, is higher for these
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than for the regular transcription.

PGATA-1 + MGATA-1MGATA-1 ⇋ PGATA-1MGATA-1MGATA-1

RNAp + PGATA-1MGATA-1MGATA-1 → RNAp + PnMGATA-1MGATA-1 + mRNAGATA-1

PPU.1 + MPU.1MPU.1 ⇋ PPU.1MPU.1MPU.1

RNAp + PPU.1MPU.1MPU.1 → RNAp + PnMPU.1MPU.1 + mRNAPU.1

3.3 ODE Models of Genetic Regulatory Networks

As discussed in the introduction, a major problem with relating a discrete model such

as a Boolean network to its associated real-world system is that a Boolean network is

discrete, synchronous and not noisy. Probabilistic Boolean network models have been

developed by Shmulevich, but the problems regarding the discrete nature of the system

still remain[63]. So, although results from the Boolean network model can be robust

in some circumstances, these properties make some conclusions based on this model to

be fragile [13]. Naturally, the Boolean network’s dynamics are heavily affected by those

three properties and any conclusions thereof may not necessarily apply directly to its

associated real-world system. As expected, recent papers seem to show that noise and

asynchronicity can be important factors with regards to certain important dynamics

regarding cell regulation and the cell cycle [68, 26]. As well, the continuous nature of the

real-world system may lead to fixed points which are not stable, but in a discrete system

would appear to be so.

There are two primary methodologies used to develop a continuous model of a genetic

regulatory network. One method is to start from the discrete model of the Boolean

network and convert it to an equivalent continuous system. This was done first by Leon

Glass, when he created piecewise linear ordinary differential equations (PLODEs) [32],
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and has been used in many variations since to study the mathematical behaviour of

various systems [31]. While ODE numerical simulation can be computationally intensive

for large systems, an interesting new technique to study its overall dynamics is qualitative

simulation of piecewise linear ODEs [19]. This simulation uses the linear nature of ODEs

outside of transitions for PLODEs to simulate the dynamics more rapidly. While this

thesis will not go into deep technical detail on these models as they do not relate to the

fundamental topic of it, piecewise linear ODEs and qualitative simulations of such are

mathematically interesting regardless.

Another method is to start with an extensive, commonly intractable, chemical and

physical model of the system and gradually simplify features of the system until the

model becomes tractable. At its most sophisticated, the individual chemical reactions

are computationally simulated using the Gillespie algorithm or some variation thereof

[59]. While these methods allow for reasonably efficient numerical simulation, they are

difficult to analyze rigourously. In a less sophisticated vein, non-stochastic models can

be useful, commonly for very small toy systems like the repressilator or toggle switch

[74]. However, until recently, there was not a clear and simple way to do this without

the system being equivalent to some variation on Glass’s piecewise linear ODEs.

However, in 2006, Andrecut published a paper describing how to use a Mean Field

Model approach with the chemical equations for the system to map a given genetic

regulatory network whose dynamics are primarily based on activation and repression to

a system of ODEs [4]. This is the primary method this paper will use in its analysis of

the MULTISTABILITY problem as this is derived directly from the chemical equations

and remains simple enough to draw some important analytic results.

3.3.1 Piecewise Linear ODEs

Shortly after Kauffman developed the Boolean network model of genetic regulatory net-

works, Glass took the general idea of switch based interaction and adapted it to a con-
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tinuous system of differential equations known as piecewise linear differential equations.

To do this, he would use hill functions or threshold based Heaviside functions within the

system of differential equations, whereby when a certain combination of concentrations

of proteins were above or below defined thresholds the Heaviside function would either

be ”on” or ”off”. This had the effect of simulating within a continuous, asynchronous

environment something resembling a Boolean network model [32].

For a genetic regulatory network with no compartmentalization, a system of differ-

ential equations is laid out as follows. First, for each gene n, a level of ”expression” is

defined as xn ∈ R+. Given these variables, a system of ODEs is constructed as follows.

dxn

dt
= M(X)− xn

Where,

X = {x1, x2, . . . , xn}

Where M is either a hill function or Heaviside function based on a Boolean function

such that when the appropriate genes reach a certain threshold of expression (either

high or low) the function shifts from low to high or vice versa. For a simple system

based entirely on repression and activation, the M function would simply be a measure

of whether activation is higher than repression for any given gene. In most situations, it

is assumed that if the only effect any genes have on another gene x is repression, then

M is high unless one of those repressive genes is being expressed.

So, figure 3.3 represents a mutually repressive two gene system. For this system, if

gene A is high, then gene B is repressed and vice versa. This was the original biological

switch using genetic expression and repression [14]. In systems biology this is commonly

referred to as a toggle switch and is seen regularly within known real-world genetic regu-

latory networks. Note that this is the PU.1, GATA-1 system without self-activation. By
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Figure 3.3: A Simple Genetic Toggle Switch

taking Glass’ piecewise linear ODEs using hill functions, this system would be represented

as follows.

dxA

dt
= 5

1

1 + x2
B

− xA,
dxB

dt
= 5

1

1 + x2
A

− xB (3.9)

This system of ODEs functions, as would be expected, has three fixed points, two of

which are stable. This can be seen in the separatrix in figure 3.4. As such, it behaves

like a switch with two stable fixed states, High/Low or Low/High, and a unstable point

where the two expressions are exactly equal. The PU.1, GATA-1 system is generally seen

as tristable experimentally, where the stability is dependent on the rates of the various

chemical reactions in the system. For some reaction rates, the self-activation can provide

a very stable fixed point where the two are exactly equal, and the mutual repression

creates the other two fixed points, similar to to this system’s behaviour.

Similarly, figure 3.5 shows what is known as a repressilator, a cycle of three repressive

genes. Mathematically, this system’s set of ODEs would look very similar to the toggle

switch. In this system, there is only one fixed point, and it is unstable. This fixed point

is when all three genes are equally expressed. It is a very simple example of how genes

can be wired such that their behaviour is periodic.
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Figure 3.4: The separatrix of the toggle switch PLODE system given by the system of
ODES in equation (3.9)
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Figure 3.5: A Simple Genetic Repressilator
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Both the toggle switch and repressilator will be used in the MULTISTABILITY chap-

ter to show that MULTISTABILITY is NP-Complete.

In 2000, Elowitz et al. genetically modified a strain of e-coli to fluoresce in differ-

ent colours when certain genes were activated. They then also modified the genes to

be mutually repressive. In their paper, they created a repressilator and showed that it

oscillated in a fashion similar to that predicted by Glass’ model using hill functions [25].

In a similar paper by Gardner et al., a toggle switch was created in vitro which was able

to chemically flip by over-expressing the associated genes [27]. Both papers strongly sug-

gested that noiseless ODE models of genetic regulatory networks may be an incredibly

powerful resource when dealing with subnetworks and determining important dynamical

properties, and be especially useful for determining properties related to MULTISTABIL-

ITY. They even imply that even though it is known that noise can significantly change

the behaviour at times, in general the expected behaviour is reasonably accurate.

3.3.2 The Mean Field Model

Given the chemical master equations (3.2) - (3.8), it is possible to use statistical averaging

methods to define the continuous dynamics as would be expected from any given system.

Here are the important chemical equations again with rates of reaction. As discussed

before, this thesis will only consider repression and activation by dimers for the purposes

of simplicity. For more generalized systems, see Andrecut’s 2006 paper [4]. All of these

formulas are as described from the previous section, with the respective rates placed

above the reaction direction.

Transcription and mRNA decay

RNAp + Pn

kn
I−→ RNAp + Pn + mRNAn

mRNAn
k

n

I−→ ∅
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Translation and protein decay

Ribo + mRNAn

kn
II−−→ Ribo + mRNAn + Mn

Mn
k

n

II−−→ ∅

Dimerization

αij : Mi + Mj
kij

←−
kij

−→ MiMj

Repression

λn
ijαij : Pn + MiMj

k
n

ij

←−
kn

ij

−→ PnMiMj

Activation

µn
ijλ

n
ijαij : RNAp + PnMiMj

kn
ij

−→ RNAp + PnMiMj + mRNAn

Here, αij , λ
n
ij, µ

n
ij ∈ {0, 1} depending on whether or not that reaction exists within the

associated network. As noted, for a protein to activate another gene, it must first bind

to the associated promoter and thus essentially act as a “repressor”. This is because the

binding fundamentally represses the basic basal rate, but activates a potentially higher

rate of protein production.

Note that there is only one promoter for each gene within the system at any time,

and the promoter can lie in a list of possible states. One state all promoters have is the

base state where nothing is attached to the promoter. If any protein or protein complex

can attach to a promoter given the system of chemical equations, then the state where

that promoter is attached to that protein complex is a possible state. All promoters have

a certain possibility of lying in each of these states, and when they are in said state the

entire system will behave accordingly.

In chemical equilibrium, the concentrations will be statistically as described in (3.10),(3.11)
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for the dimerization, and repression rates. Here [X] represents the concentration of chem-

ical X in the system. It is easy to see that when a system is in equilibrium, any dynamical

representation of the system will be in a fixed state.

kn
ij[Pn][MiMj] = k

n

ij [PnMiMj] (3.10)

kij[Mi][Mj] = kij [MiMj] (3.11)

This thesis will only examine systems where dimers have an effect. So, as discussed,

a gene’s promoter can lie in one of the following states: {Pn, PnMiMj}, i.e., either the

promoter is free, or it is bound to a dimer, and there is some probability of it being in

either of these states. From the equations, it is possible to determine the probability of

a promoter lying in either of these states. The entire system potentially behaves with

completely different dynamics based on the state of each promoter. By taking the field

of all possible dynamics given all promoter states, and then taking the mean of said field

given the probabilities of each state, it becomes possible to create a mean field estimate

as to how the various proteins and mRNAs will be produced or decay on average at any

time. Thus, it becomes possible to roughly model the dynamics of the genetic system.

Let xi be the reduced concentration variable for the transcription factor associated

to i. Then,

[PnMiMj]

[Pn]
=

kn
ij

k
n

ij

[MiMj] =
kn

ij

k
n

ij

kij

kij

xixj = (bij + bji)xixj = 2bijxixj ,

where bij represents the influence of the ij multimer on the system. As the order of i, j

is not important, it is just assumed bij = bji. This is done to make later equations more

clear. Now from this equation it is possible to determine the probability of a promoter

Pn being in a free state.
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πn
0 =

1

1 +
∑

ij λijαijbijxixj

.

This is where the denominator is the sum of all of the possible states of the promoter

with the bij influencing the possibility of being in the repressive state rather than the

free state. Similarly, the probability of Pn being in the state where it is attached to a

dimer MiMj.

πn
ij =

λijαijbijxixj

1 +
∑

ij λijαijbijxixj

.

If the system were expanded to use all possible types of multimers, the various prob-

abilities for the states of a given promoter are generated in a similar fashion. Andrecut’s

paper on this model does this [4].

Now that the probabilities that the system’s promoters are in a given state is known,

it is possible to approximate the transcription of mRNAn by taking the mean of the

possible dynamics given those probabilities. This is accomplished by noting that when

the system is in a steady state, the mRNAn transcription will be equal to the mRNAn

decay. So if and only if this is true are the differential equations for the dynamics equal

to 0. Using this fact, the chemical dynamics can be approximated. Let yn be the mRNA

concentration of the nth gene. Then,

kn
I +

∑

ij kn
ijµ

n
ijλ

n
ijαijb

n
ijxixj

1 +
∑

ij λijαijbn
ijxixj

= k
n

I yn,

ηn

1 +
∑

ij λijαijd
n
ijb

n
ijxixj

1 +
∑

ij λijαijbn
ijxixj

− yn = 0,

where ηn =
kn

I

k
n

I

, dn
ij =

kn
ij

k
n

I

. Both of these can be viewed as the ”promoter strength”

given that current state of the promoter since it provides how much the promoter over-

comes the natural decay rate of the system. With this equation, it is possible to define
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the set of nonlinear differential equations which will approximate the transcription of

gene n:

dyn

dt
= ηn

1 +
∑

ij λijαijd
n
ijb

n
ijxixj

1 +
∑

ij λijαijbn
ijxixj

− yn.

Similarly, by recognizing that in a steady state, the concentrations [mRNAn] and [Mn]

need to be in balance according we see that kn
II [mRNAn] = k

n

II [Mn]. Thus, letting θn =

kn
II

k
n

II

we have the following set of differential equations which approximate the translation.

dxn

dt
= θn(yn − xn), n = 1, . . . , n

With these two sets of differential equations, it becomes possible to describe statisti-

cally the mean dynamics of the simplified genetic regulatory network, given no intrinsic

or extrinsic noise. As stated, with very little work this model can be extended to use

any combination of multimers and even include more chemical reactions. However, for

the purpose of studying the MULTISTABILITY problem it is acceptable to use this

simplified version.

A clear benefit to using the Mean Field Model compared to most other approaches

is that this model comes directly from the chemical master equations for the system.

So, unlike results with Glass’ PLODES, any analytical results the Mean Field Model

provides relate directly to a specific chemical system. In fact, the hill function-based

PLODEs of Leon Glass’s work can be easily simulated as a subconstruct within this

system by choosing appropriate variables for the translation and repression strengths,

and the Heaviside function-based PLODEs can be simulated by allowing for extremely

large multimers which are rapidly created.

Due to its direct connection to the physical system, and the relative ease of its con-

struction, the Mean Field Model will be the primary model used to study the problem

of MULTISTABILITY within genetic regulatory networks within the following chapter.
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With regards to the PU.1, GATA-1 example, the chemical equations given in the

previous section would simply have the associated empirically determined rates assigned

to them, and then the average statistical behaviour of the system could be simulated

with this model.

3.4 Other Continuous Models of Genetic Regulatory Networks

As discussed in the previous section, both the PLODE and Mean Field Model approach

produce a very useful mathematical model which can be studied analytically to study

interesting aspects of the behaviour of a genetic regulatory network. In both cases, the

models can be extended to include spatial compartmentalization and delays as necessary

to make them more empirically sound [32]. However, notably missing from both models is

the property of noise, both intrinsic noise from the timings of the chemical reactions and

extrinsic noise from outside the system. The noise can obviously be incorporated in the

differential equation models by modifying them to be appropriate systems of stochastic

differential equations. Yet, this requires the addition of a layer of artificiality for some of

the noise which makes connecting computational results with real world effects difficult.

To avoid the artificiality of “adding noise” to the differential equation models, a

method has been developed which uses the Gillespie algorithm to simulate the chemical

process probabilistically [29, 30]. In this model, the chemical equations are mapped to

associated chemical master equations similar to the Mean Field Model. Intrinsic noise is

incorporated by the Monte Carlo methods used to simulate the chemical equation, and

outside noise can be easily added in a fashion which is clearly connected to real world

phenomena [59].

For the purposes of understanding the MULTISTABILITY problem, this lack of noise

is not likely to have a huge effect. If the amount of noise is kept minimal, the stable fixed

points will, by definition, remain fixed in the associated real world network. However, if



49

the model is used to simulate the real world dynamics, or determine possible limit cycles,

the noise can have a very important effect with regards to the dynamics [26], especially

when it comes to a cell’s differentiation pathway. In fact, some recent work has shown

that noise may end up being very important for some of the cellular processes observed

in the laboratory, like the cell cycle [68].



Chapter 4

The MULTISTABILITY Problem

4.1 Introduction

In the study of genetic regulatory networks, the problem of finding “genetic switches” is a

matter of determining which subsystems have stable or semi-stable fixed states within the

genetic regulatory network. This problem, known as the MULTISTABILITY problem,

will be defined as follows:

MULTISTABILITY (non-rigourous) Given an instance of a genetic regulatory net-

work (GRN) (or subnetwork), does there exist more than one attractor which is fixed

and stable for that network?

In this general form, this is not a rigourously defined mathematical or computational

problem. The model is not clearly defined, and neither are the definitions of what fixed

or stable means. As well, a given genetic regulatory network alone may not entirely

encompass the full dynamics. This is due to the fact that the real world genetic network

exists in a noisy environment with many external factors not incorporated within this

definition, and the system itself may include other external chemical and quantum effects.

However, it is possible to rigourously define this biological problem given a specific

model of genetic regulatory networks. This thesis will use the model developed from the

previous chapter, the Mean Field Model. It is assumed that extrinsic noise is minimized,

and the dynamics are affected entirely by chemical activation and repression with homo

and heteromultimers. With these assumptions, the problem is rigourously defined using

Andrecut’s Mean Field Model of genetic regulatory networks based on the chemical

master equations. MULTISTABILITY, defined with the most general version of the

50
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Mean Field Model, is defined as follows:

MULTISTABILITY (mean field model) Given a system of ODEs based on the

Mean Field Model [4]:

xn, yn ∈ R+

dyn

dt
= ηx

1 +
∑
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γn
i βn

i cn
i a

n
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dxn

dt
= θn(yn − xn)

The system is MULTISTABLE if and only if there exists more than one stable fixed

point for this system of ODEs. The related MULTISTABILITY function problem is

solved if all stable fixed states can be provided.

With the above definition of MULTISTABILITY, there remains an issue of defining

a given GRN and choosing all of the appropriate constants. Naturally, if a complete hu-

man genome network were to be instantiated within this system, the definition of a single

instance would be massive and intractable. The human genome has more than 20,000

genes, and including all possible heteromultimers of their proteins and all interactions

would exponentially increase the size of the system. Thus, it is necessary to simplify

the system to a set of base elements while maintaining most of the important functional

dynamics of the original system. As discussed in a previous chapter on genetic regulatory

networks, some biologists believe that a majority of the dynamics of GRNs are influenced

entirely by either activation or repression of one gene by another, commonly by homo-

multimers. If restricted to this subset of MFMs, the problem of MULTISTABILITY

becomes considerably more tractable and perhaps even efficiently solvable. As such, this

thesis develops this idea of activation-repression systems.
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4.2 Activation-Repression Systems

The Mean Field Model provides a way to study the dynamics of genetic regulatory

networks. However, as seen in the introduction, it quickly becomes intractable to even

define the system completely if all real world interactions are considered. Yet, if the

dynamics are more or less dependent on the homomultimer, or even homodimer activation

and repression, the Mean Field Model becomes considerably less complex. Unfortunately,

the calculation of stable fixed points remains an elusive problem if the model remains

in the form of a system of ODEs. This section will construct a related combinatorial

object based on a pair of directed graphs, called a activation-repression system, which

has a direct connection to the limited subset of Mean Field Models of genetic regulatory

networks discussed above. This object distills the system of ODEs into a form which is

simple and allows for a property called an A-R numbering to be defined. This property

is believed to find all important stable fixed states.

Activation-Repression System An activation-repression system (A-R system) is a

pair of digraphs on a given set of nodes N , and is represented by (N, A, R) where A and

R are sets of directed edges on N .

A few examples of these A-R systems are presented in figure 4.1. As can be seen in

the figure, the two digraphs are drawn on the same nodes with the edges being marked

to indicate that they are from the A (activation) set or the R (repression) set of edges.

In this thesis, the methodology will be as follows. The edge ends are changed based

on which set they are from. If they are from the A set, they have an arrow at their

tip. If they are from the R set, they have a flat line. For a given genetic regulatory

network where dynamics are determined entirely by activation and repression reactions,

the mapping to an A-R system is clear. Albeit, the rates of activation and repression

are lost by this mapping. So, this is a forgetful map. If it is necessary to include rates,
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(a) Toggle Switch
with Self-Activation

(b) Repressila-
tor

(c) Random A-R Sys-
tem

Figure 4.1: Examples of A-R Systems

a natural extension of this definition would have the edges weighted with their reaction

rates, this extension will not be explored in this thesis.

In summary, to map a MFM to an A-R system, the genes which activate other genes

are connected by directed edges within the A digraph, and genes which repress other

genes are represented by directed edges in the R digraph. More complicated chemical

interactions, such as those involving heteromultimers or other chemical compounds, will

be ignored by this system. This should not be a significant problem, since it seems that

most important genetic regulatory behaviour is affected by these direct interactions.

So, referring to the mutually repressive system of PU.1 and GATA-1, figure 4.1a

would be the graphical representation of that system, where one node is labelled PU.1,

and the other is labelled GATA-1. The looping arrow points back at itself to mark the

self-activating nature of each node, while the flat-topped edges point at each other to

represent the mutual repression.

With this graphical object representing genetic regulatory networks’ dynamic inter-

connections, it is possible to map the problem of determining stable fixed states to a

related combinatorial numbering problem.

A-R k-Numbering Given an A-R system S, and a k ≥ 2, an A-R k-numbering F :

N → Q+ is a mapping such that the following condition is satisfied:
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F : N → Q+, F (n) =























0 if r(n) > 0 and a(n) = 0

1 if r(n) = a(n) = 0

2∗a(n)
a(n)+r(n)

otherwise

Where the functions a, r are defined as follows:

1.

let a : N → Q+, a(n) =
∑

m→n∈A

F (m)k

2.

let r : N → Q+, r(n) =
∑

p→n∈R

F (p)k

For ease of notation, it will be assumed that k always equals 2 whenever the above is

referred to as an A-R numbering (without referencing the k).

This numbering is a simple way to represent a list of fixed states from an instance

of the Mean Field Model for a given network with a large enough basal rate when all

activations and repressions have very similar strengths and are based on homomultimers

of size k ≥ 2. As discussed earlier, without simplifying the system the problem of

determining stable fixed points is obviously intractable. This is very important as it shows

that if it is possible to find such a numbering for a given A-R system efficiently, then it

is possible to determine fixed states for a large subset of genetic regulatory networks and

partially answer the MULTISTABILITY problem. However, if this problem is provably

intractable, then the MULTISTABILITY problem is guaranteed to be intractable or

perhaps even uncomputable.

While MULTISTABILITY is concerned with the existence of multiple stable fixed

points. It is true that given a MFM which matches the numbering, there will exist at

least one fixed point with all values xi are positive. However, this fixed point may be

unstable.
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Theorem 4.2.1. Given a mean field model of a genetic regulatory network, where tran-

scription is instantaneous, and all interactions are dimer based (i.e. k = 2), there is at

least one fixed point X = x0, x1, . . . , xn with all values xi > 0.

Proof. Since, transcription is viewed as instantaneous, we have the following vector field

G in Rn (where X = {x1, x2, . . . , xn}, and pi are rational functions of even degree):

dxi

dt
= pi(X)− xi, i = 0, 1, . . . , n

Where pi(X) > 0 for all i and all values of X, since the degree of the rational function

pi will always be even due to the restriction to dimer-based interactions. Consider the

hyperplane on the axis x1 = 0. The normal to this hyperplane is N = (1, 0, . . . , 0). For

the dot product, we have G ·N = p1(X) > 0. This is true for all other axes. Therefore,

the vector field points towards the positive orthant.

Create a large hypersphere, centered at the origin with radius r (i.e.
∑

i x
2
i = r2)

in the usual form. The outward unit normal to the surface of this sphere will be S =

(x1, x2, . . . , xn)/r. On the surface of this sphere, we have G · S ≤
∑

i pi(X) −
∑

i xi ≤

pi(X) − r. So, if it is possible to show that there exists an r such that r >
∑

i pi(X),

then the vector field points into the volume surrounded by the sphere. There exists such

an r since the degree of the rational functions pi are less than one for all i. Therefore,

for large enough r, r > pi(X), for all i.

This surface has topological type of a hypersphere, and the vector field points inward

to the volume encapsulated by the hypersphere and the axes. Therefore, the vector field

on this surface has degree 1.

Therefore there must exist a zero inside the surface, and thus a fixed point.

To demonstrate how the A-R numbering can catch the fixed states for a system,

one must simply look at figure 4.1a. In this figure there are two nodes which mutually

repress each other while simultaneously being self-activated. Let the node on the left
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be a and the node on the right be b. The numberings show quickly why this is called

a toggle switch. F (a) = 2, F (b) = 0 is one possible numbering. Similarly F (a) = 0,

F (b) = 2 is also a valid numbering. However, since this system is self-activating, the

numbering F (a) = F (b) = 1 is also valid since F (a) = 2F (a)
F (a)+F (b)

= 2F (a)
F (a)+F (a)

= 1 = F (b).

If the switch had no self-activation, then the only possible numberings would be F (a) =

1, F (b) = 0 and F (a) = 0, F (b) = 1. From a biological perspective this is encouraging,

as various biological experiments have shown many of the differentiation switches within

a cell are essentially self-activating toggle switches with exactly these three fixed states.

It is theorized that these switches act as controllers for most observed cell behaviour.

Specifically that they act as the originator of cellular differentiation. The fact that these

three numberings match all possible stable fixed states for the self-activated toggle switch

implies that the A-R system match the observed systems and provide insights into that

behaviour.

This numbering provides us with most fixed states for a given GRN if the basal rate,

η, is sufficiently large. However, the proof does not imply that these are stable fixed states

for all possible rates. In fact, in certain cases they are not stable for certain parameters.

For example, given the PU.1, GATA-1 self-activating mutually repressive system from

above, if it has a low decay rate, the central fixed point F (a) = F (b) = 1 is an unstable

fixed point. However, with a high decay rate and other certain parameters, there can

become a small island of stability. What is particularly interesting, is while this doesn’t

have stable fixed states for all systems, it does give possible stable fixed states for all

systems, and as the following example shows, when it misses a fixed state, that fixed

state is not stable.

The repressilator in figure 4.1b has the property that there is no valid numbering.

This is apparent from the fact that all nodes have the binary value of 1 or 0, because

there is no activation and only repression. Also, the values are such that if a → b, then

F (b) = ¬F (a). So writing out the system you have for a→ b→ c→ a, F (b) = ¬F (a) =
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0

1

0

1

Figure 4.2: System w/ Numbering to Subsystem w/o Numbering

F (c) = ¬F (a), thus F (a) = ¬F (a), a contradiction. Hence, the repressilator has no

valid numberings. In the equivalent genetic regulatory network, it is known that the

repressilator has no stable fixed states, so this numbering again matches the observed

behaviour. However, in the associated Mean Field Model system of ODEs there is a state

when all three concentrations are equal, but this fixed state is unstable.

These two examples lead to Conjecture 4.2.2. It seems that while this numbering

can sometimes catch potentially non-stable fixed states, it does catch all of the stable

ones that do exist in the graph, and misses some of the non-stable ones. In the following

section, the numbering will be adapted so it will provide only stable fixed states to a

subset of A-R systems known as B-R systems. From this subset of problems it will be

possible to show a lower bound to the computational difficulty of solving arbitrary A-R

numberings and thus the MULTISTABILITY problem..

Conjecture 4.2.2. All stable fixed states for the MFM have an associated possible num-

bering for the graph, independent of the chemical reaction rates.

Definition A subsystem S of a given A-R system is an A-R system (N ′, A′, R′) such that

N ′ ⊂ N and A′ = {(a1, a2) ∈ A|a1, a2 ∈ N ′}, R′ = {(r1, r2) ∈ |r1, r2 ∈ N ′}. A subsystem

is defined by the subset of nodes that it contains, i.e., S ⊂ N is a way to represent a

subsystem.

Obviously, having a valid numbering for any given subsystem S ′ ⊂ N where S ′ 6= N

does not imply there exists a valid numbering for the main system. Similarly, if there
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exists a valid numbering to a given A-R system S, it does not imply that there will exist

a valid numbering for any given subsystem, as is seen in figure 4.2. The full system on

the left has a valid numbering (provided with the figure), however when the marked node

is removed from the system to produce the system on the left, the subsystem becomes

the repressilator, which, as discussed earlier, has no valid numbering. It is of interest

to find which restrictions need to be placed on a subsystem S ′ such that if the system

S has a valid numbering, then the subsystem S ′ will also have a valid numbering and

vice-versa. If it is possible to reduce the search for a valid numbering to a search across

a variety of specific subsystems, it may be simpler to determine if a given system has the

MULTISTABLITY property.

Lemma 4.2.3. Let S = (N, A, R) be an A-R system with a valid A-R numbering F

and F (n) = 0 for some n ∈ N , then F also a valid A-R numbering for the subsystem

S ′ = {N \ n}

Proof. This is obvious from the fact that F (n) = 0 adds at most a zero to the a and r

values for any other node, so its removal from the system will have no effect on the a

and r values for any nodes, and thus the numbering remains valid.

Lemma 4.2.3 provides a simple method to determine subsystems with valid number-

ings given a numbering for the entire system. However, this provides only one numbering

for the subsystem and does not give any insight into whether the subsystem could have

more than one numbering as any given node may have F (n) = 0 for one numbering and

F (n) 6= 0 for another. Regardless, the proof provides an insight into how changing one

node’s value affects another node’s value and provides some information about potential

fixed states.

Definition If S = (N, A, R) is an A-R system. A node m ∈ N is said to be dependent

on n ∈ N if there exists a path in A∪R from n to m. If there also exists a path from m

to n and m 6= n, the nodes are said to be codependent.
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(a) A Tree

1 0

0

1

0

(b) Switch Depen-
dency

Figure 4.3: Dependency Examples

All nodes are dependent on themselves, as the trivial path always connects n to itself.

As well, all nodes within a cycle are codependent on each other. However, it is not

necessary for two nodes to lie in the same cycle to be codependent, this can be seen by

taking the union of two cycles with a single connecting node. All nodes are codependent

without being in the same cycle. However, for there to exist codependent nodes, the

codependent nodes must lie in a directed cycle. This can be seem from the need for an

incoming and outgoing edge for the codependent node.

In figure 4.3a, all nodes are dependent on a central node, and no nodes are code-

pendent as the system is simply a tree radiating from a common node, so there are no

directed cycles. In figure 4.3b, all nodes within the cycle on the left are codependent,

and are dependent on the toggle switch to the right. This example clearly illustrates why

this feature is called dependent. As discussed before, a toggle switch such as that on

the right has two possible numberings, and the cycle on the left has no valid numbering,

however if the toggle switch is in the state such that the marked node is high, the system

has one valid numbering, which is given. Thus, the dynamics of the cycle on the left are

entirely dependent on the state of the switch on the right. This leads to a very natural

lemma regarding dependency and numberings.

Lemma 4.2.4. Given an A-R system S and some numbering, F , if the node m’s value,

F (m) is affected by the changing of another node’s value F (n), then m must be dependent

on n.
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n

m

Figure 4.4: Counterexample where m depends on n but is not affected by a change in n

Proof. Let F (m) = 2a(m)
a(m)+r(m)

, where F (m) is affected by the changing of another node

F (n).

If n → m ∈ R ∪ A, then there exists a path from n to m, and thus m is dependent

on n.

If 6 ∃n→ m ∈ R ∪A, then for some m′ ∈ N \m, F (m′) is affected by the adjustment

of F (n) where m′ → m ∈ R ∪ A. If n → m′ ∈ R ∪ A, then there is a path from n to

m, and again m is dependent on n. Repeating this argument recursively it is possible to

build a path from n to m, and thus show that if F (m) is affected by a change to F (n),

then m is dependent on n.

Corollary 4.2.5. If a node m is not dependent on a node n in S, an A-R system, then

for any numbering F , the value of F (m) is not affected by any change to the value of

F (k) for any node k which is dependent on n.

Proof. This follows naturally from the lemma.

The converse of this corollary is not true. A simple counterexample is the system such

that the only node between m and n is k such that F (k) = 0 for all possible numberings,

then the value of F (m) can never be affected by any change to F (n). This is shown in

Figure 4.4.

Definition A given subsystem S ′ ⊂ S is closed, if all nodes are co-dependent in S ′. If

no nodes are co-dependent, the system is said to be open.
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Proposition 4.2.6. If S is an open A-R system, then there exists exactly one numbering

and it can be efficiently calculated.

Proof. For the case where S = ∅, this is obviously true.

We may assume that S 6= ∅. If no nodes are co-dependent, there must exist a set

L of nodes which are not dependent on any other nodes. Since these nodes are not

dependent on any other nodes, they must have their a, r functions equal to 0, therefore

F (l) = 1, ∀l ∈ L. From this, it is simple to calculate the values of the other nodes from

this starting point by simply calculating the value F (m) = 2a(m)
r(m)+a(m)

, m ∈ M = {m ∈

N \ L|∀n→ m ∈ A ∪R, n ∈ L}, setting L = L ∪M , and repeating until L = N .

The accuracy of this algorithm is guaranteed as the numbering is exactly as defined

in the definition of an A-R numbering. The efficiency of this algorithm is O(|N |), as it

calculates F once and only once for each node.

First, this states that the MULTISTABLITY problem is trivially false for any genetic

regulatory network whose network representation is a tree. It shows that without a

closed subsystem within S, the A-R numbering problem is trivial. However, once there

is a closed subsystem, and thus a cycle, other possibilities arise. There may exist more

than one fixed state, or there may not even be a fixed state for a given A-R system. So,

it is necessary to study closed systems to understand the MULTISTABILITY problem.

This line of research will be returned to in the Basal Rate-Repression System section of

this chapter.

Definition A given subsystem S ′ ⊂ S is isolated if no nodes in S ′ are dependent on

nodes in N \ S.

With this property of subsystems it’s possible to relate a valid numbering from S to

an isolated subsystem S ′. Note that the trivial subsystem S ′ = S is by definition an

isolated subsystem of S.
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Proposition 4.2.7. S has a valid numbering F : S → Q+ if and only if all isolated

subsystems have a valid numbering.

Proof. (⇒) Given a valid numbering F for S, and an isolated subsystem S ′. By definition

S ′ has no nodes which are dependent on nodes outside of S ′. Therefore, it was shown

before that if a node m is not dependent on another node n, then F (m) is not affected by

any nodes k which are dependent on n. As such if n and all nodes k which are dependent

on n are removed, the numbering remains valid for the remaining nodes. Hence, if all

nodes N \ S ′ are removed, the numbering remains valid for S ′. Thus, if S has a valid

numbering, any isolated subsystem S ′ has a valid numbering.

(⇐) Since S is itself an isolated subsystem, if all isolated subsystems have a valid

numbering, then S itself must have a valid numbering.

Definition A given subsystem S ∈ N is said to be controlled by another subsystem

L ∈ N if there does not exist any path in R ∪ A from S to L and there exists a path in

R ∪ A from L to S.

Definition Given an A-R system, a subset of nodes S ⊂ N is called a switch if it is

isolated, closed and there exists more than one valid A-R numbering for the associated

A-R system where N is restricted to S.

An example of a subsystem controlled by a switch in Figure 4.3b with the toggle

switch controlling the repressilator. From a biological standpoint being able to find

examples of these systems within real-world genetic regulatory networks is valuable from

the perspective of finding drug candidates and differentiation factors. If a switch is found

that controls a part of the network which directs the behaviour of the cell, it could lead

to a variety of drugs and procedures for medical treatments. For example, if a switch was

found that turns off the replication genetic circuitry in a cell, it could be used to stop

cancerous stem cells from reproducing by forcing them to differentiate into a non-lethal

cell type, or simply cause apoptosis (cell death).
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These are two very intuitive and helpful definitions to show how subsystems behave

and interact. For example, if the PU.1, GATA-1 switch were to be further connected into

a larger network, there would be various major subsystems which are directly controlled

by the current state of the switch. Knowing the purpose of the subsystems through other

techniques would provide a hint as to whether the switch is functionally useful to target

with drug treatments. As well, using this idea of subsystems controlled by switches, a

large amount of cellular phenomena becomes intuitive. For example, if a known switch

is part of a larger switching mechanism, the evolutionary purpose of such a switch would

be clear. For example, this method of switches controlling each other is hypothesized to

be a mechanism for how cells ensure one-way differentiation down a tree from a single

progenitor cell to a variety of stable final states [38].

From this, it becomes obvious that any heuristic approaches to the MULTISTABIL-

ITY problem which provide solutions to real world systems will be very important for

future medical biological use. This numbering idea provides a method to search for natu-

ral switches within the biological networks. Isolated systems are easily detected by using

network flow theory and finding one-way cuts within the large flow graph, and then if it

is possible to determine the MULTISTABILITY, these isolated systems can be tested to

determine if they are switches, and those switches naturally become areas of the genetic

regulatory network to concentrate further medical research on.

As well, the behaviour of these A-R systems and A-R numberings are interesting from

a purely mathematical perspective. If the conjecture, 4.2.2, provided in this section is

indeed true, it will be an exciting result with respect to methods of determining fixed

states of these types of ODEs. It provides an inherently mathematical link between a

large subset of ODEs and combinatorial theory. Similarly, any way of defining system-

based constants for these types of systems would be interesting as they would naturally

relate to the Mean Field Model system of ODEs and perhaps even provide insights to

the entire field of dynamical systems.
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Thus, the A-R numbering provides two exciting possibilities: biologically it provides a

simpler system to detect switches and drug targets within the genetic regulatory network,

and mathematically it provides an entirely new realm within combinatorics which has

connections to dynamical systems theory and network flow theory. In the following

section, these A-R systems will be restricted even more so to prove the complexity of

the MULTISTABILITY problem and provide some heuristics for detecting switches and

MULTISTABILITY within a given genetic regulatory network.
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4.3 Steady State Classifications of A-R Systems

Classifications of A-R Systems Based on their numberings, it is possible to classify

A-R systems into six types which describe their common dynamics and fixed states from

the structure.

COMPLETELY UNSTABLE A system is COMPLETELY UNSTABLE if there

exist a switch S ∈ N , and for any valid value of the switch, the entire system S has no

valid A-R numbering.

Figure 4.5 shows an example of a system which is completely unstable. It has a toggle

switch connected to two different repressilators. Compared to a real world system, this

would be similar to having a switch connected to two engines, as the switch changes

position, a different engine starts. Dynamically, when the switch is in one position, one

repressilator is oscillating, and vice versa. Using the PU.1, GATA-1 example, since the

state of the PU.1, GATA-1 switch fundamentally determines the long-term dynamics

of the system, it is likely that in the larger genetic regulatory network, there exists two

“engines”, which are either active or inactive based on the PU.1, GATA-1 state. However,

at this time, this is simply hypothesized.

Figure 4.5: Example of COMPLETELY UNSTABLE

COMPLETELY STABLE A system is COMPLETELY STABLE if there exists a

switch S ∈ N , and for any valid value of the switch, the entire system S has at least one

valid A-R numbering.

Figure 4.6 demonstrates a system which is completely stable. It has a switch con-
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nected to the repressilator such that regardless of the state of the switch, the represillator

remains inactive. In many circumstances, like the one in the figure, this increases the

size of the switch without having any real effect on the overall dynamics of the system.

However, a tree of switches can also be completely stable, and thus this would have the

effect of pointing out cascading switch systems. Similar to how once PU.1 and GATA-1

become unstable and choose between themselves, they are believed to make other self-

activating switches down the line unstable so they need to choose between two or more

possible final states, thus leading to the one-way differentiation of cell types.

Figure 4.6: Example of COMPLETELY STABLE

VARIABLY UNSTABLE A system is VARIABLY UNSTABLE if there exists a

switch S ∈ N , and for at least one valid value of the switch, the entire system S will

have no valid A-R numbering.

VARIABLY STABLE A system is VARIABLY STABLE if there exists a switch

S ∈ N , and for at least one valid value of the switch, the entire system S has a valid

A-R numbering.

These two classes are two sides of the same coin. While they are not equivalent to

each other, many different types of systems lie in both of these classes, see Figure 4.7 for

an example of this. These types of systems have similar implications to the completely

unstable and completely stable classes. Except, the state of the switch can, in certain

circumstances, determine if a system within a genetic network is active or inactive at any

time. Outside of the context of a genetic regulatory network, one example of a system

that lies in both of these regimes would be similar to a car’s ignition and engine. When

the key is in the off position, the system is completely stable and nothing is happening:
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when the system is turned to the on position it becomes unstable and the engine starts

to work.

In a genetic regulatory network context, if there was a switch which controlled whether

or not a cell would periodically reproduce itself, it likely would be such that in one state

it repressed an unstable subsystem to force it to stablize, and in the other state would

release that subsystem to become active and unstable and thus periodically perform

some action. In a way, these are the most interesting of the subsystems within the

genetic regulatory network as these systems connect a switch’s state with its function. If

it were possible to find these rapidly, it would be possible to look at the genes directly

affected by the switch and determine their functionality in the larger system.

Figure 4.7: Example of VARIABLY UNSTABLE / VARIABLY STABLE

UNSTABLE A system is UNSTABLE if there does not exist a switch S ∈ N , and

the entire system S has no valid A-R numbering.

These systems are remain active with no stable fixed states until the cell dies or

something changes the chemical reaction rates within this system. In many cases, these

behave like a genetic motor doing some form of periodic behaviour.

Figure 4.8: Example of UNSTABLE

STABLE A system is STABLE if there does not exist a switch S ∈ N and there

exists a valid A-R numbering.
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A stable system does not have much effect on the entireity of the network. If it is

determined that a system is stable, it means that it will, in general, always return to a

singular state and, without noise, not have any notable dynamics.

Figure 4.9: Example of STABLE

This provides a natural division of this class of systems which relates their dynamical

behaviour to their network structure. A given A-R system may be part of more than one

of these sets, as shown in the following lemma.

Lemma 4.3.1. The following are true:

1. COMPLETELY STABLE ⊂ VARIABLY STABLE

2. COMPLETELY UNSTABLE ⊂ VARIABLY UNSTABLE

3. VARIABLY STABLE ∩VARIABLY UNSTABLE 6= ∅

Proof. Parts 1 and 2 are self evident, since if all possible switch states have the STABLE

(UNSTABLE) property, then there must exist at least one which has that property.

Part 3 is demonstrated by figure 4.7

In the general case, determining whether a given A-R system lies within any of the

above sets is equivalent to finding an algorithm to solve NP-Complete problems. This

will be shown in the following section by looking at a subset of A-R systems which have

more intuitive fixed state properties.
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4.4 Basal Rate-Repression Systems

It is helpful to simplify the MULTISTABILITY problem further to understand it better.

The next simplification is the removal of the activation side of the A-R System entirely.

This is equivalent to a genetic regulatory network where all nodes have a high basal rate.

In the ODEs, this translates into a high η and all observable dynamics are related totally

to repression. This is not an uncommon way to examine genetic regulatory dynamics.

Many of the seminal papers over the last decade examined systems in which only repres-

sion was the primary factor in any dynamics. The toggle switch and repressilator are

good examples of this.

Definition A basal-repression system (B-R system) is an A-R system (N, A, R) for which

A = ∅.

Lemma 4.4.1. The only possible values for a valid A-R numbering F for a B-R system

have F : N → {0, 1}.

Proof. For any node n in a B-R system with a given valid numbering F , there are two

possibilities. Either ∀m → n ∈ R, F (m) = 0, in which case r(n) = 0, a(n) = 0, thus

F (n) = 1, or ∃m→ n ∈ R, F (m) > 0, thus r(n) > 0, a(n) = 0, and thus F (n) = 0.

Thus, there are only two possible values for any valid A-R numbering of a B-R system,

0 and 1.

This naturally leads to the following important proposition.

Proposition 4.4.2. Given a B-R system S = (N, R), there exists an A-R numbering F

for such a system if and only if the following conditions are satisfied:

1. ∀n, if ∃m→ n ∈ R where F (m) = 1 then F (n) = 0

2. otherwise F (n) = 1
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Proof. Well, as the previous lemma demonstrated, for any valid numbering F for a given

B-R System S = (N, R) has the feature that F (n) ∈ {0, 1}. Hence, it is necessary to

look at two possibilities for any F (n) given a valid A-R numbering (note that a(n) =

0, ∀n ∈ N):

1. ∀m→ n ∈ R, F (m) = 0⇔ F (n) = 1, since r(n) = 0 and thus F (n) = 1, since F is

a valid A-R numbering.

2. ∃m→ n ∈ R, F (m) = 1⇔ F (n) = 0, since r(n) > 0 and thus F (n) = 0, since F is

a valid A-R numbering.

Thus, if F is a valid numbering, the above axioms are obeyed for F .

The previous conjecture, 4.2.2, stated that all stable fixed states were contained within

the set of all associated possible numbering. Assuming that conjecture is correct, another

conjecture arises for B-R systems. The counterexamples for the A-R system where it

would provide a numbering that was associated to an unstable fixed state given certain

rate parameters depending on certain conditions where mutual repression is cancelled

by mutual self-activation. These types of circumstances simply do not happen for B-R

systems as the restriction fundamentally binarizes the numberings. Thus, it becomes

reasonable to state a stronger conjecture for B-R Systems.

Conjecture 4.4.3. All stable fixed states for the MFM for B-R systems have an associ-

ated possible numbering for the graph and vice versa.

Lemma 4.4.4. Given a B-R system where R is only a path of length k (See figure 4.10).

The only valid numbering is F (m) = m(mod 2), where m is the mth node in the path.

Proof. k = 0 is obvious. k > 0 will be proved by induction on k.

For k = 1, there is only one node in the network n = 1, by definition this node

has no other nodes pointing at it, so the first axiom of a B-R numbering states that

F (n) = 1 = 1(mod 2). Thus, this is true for k = 1.
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k nodes

Figure 4.10: A repression path of length k

Assume true for k = l. For k = l + 1, no other nodes are dependent on the node

(l + 1) ∈ N , therefore any valid numbering, F , must be valid for S \ (l + 1), and the

only valid numbering is F (m) = m(mod 2). Therefore F (l) = l(mod 2). Therefore

F (l + 1) = l + 1(mod 2), since the only node with a directed edge at (l + 1) is l.

This proof leads to an interesting and simple result showing the power of this math-

ematical object for detecting fixed states. It is already known in the literature that a

self-repression cycle will have more than one stable fixed state if the cycle length is even,

and will have no stable fixed states if the cycle length is odd. However, unlike the other

proofs, this result trivially falls out without any complicated dynamical systems analysis.

This is because any isolated path in a system S must have an alternating numbering of

1, 0, 1, 0, . . ..

Proposition 4.4.5. Suppose we are given a B-R system which is a cycle of length k > 1

(see figure 4.11). If k is odd, the system has no valid numbering. If k is even, the system

has only two valid numberings.

Proof. First note that if k > 1 and there exists a valid numbering F , there must exist a

node n such that F (n) = 1, and another node m, n→ m such that F (m) = 0.

Take the case where S is a cycle of length k, where k is odd. Assume for the sake of

contradiction that a valid numbering F exists. Thus, for some node n, F (n) = 0. This is

because for some m→ n ∈ R, F (m) = 1. Therefore, from lemma 4.2.3, F will be a valid

numbering for S \ {n}, a path of length k − 1. Relabel the nodes in the path such that

the first node in the path is 1, and the final node in the path is k − 1. Since k is odd,
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k nodes

Figure 4.11: A repression cycle of length k

k− 1 = 0(mod 2). However, F (m) = 1. Therefore there is a contradiction and F cannot

be a valid numbering for S. Therefore, if k is odd, the system has no valid numbering.

Now, take the case where S is a cycle of length k, where k is even. It is possible to

create a numbering F for S, where each node alternates between 0, 1. Therefore, one of

the nodes, n, must have F (n) = 1, and thus the node before it in the cycle, m, must

have F (m) = 0. This numbering exists if and only if S \ {m} has the same numbering.

Well, the node l with l → m ∈ S has the value F (l) = k − 1(mod 2) = 1. Therefore

F (m) = 0. Thus, this is a valid numbering for S. Similarly, it is possible to create a

second numbering G, where G(n) = F (n) ⊕ 1, and hence G(n) = 0. Thus S has two

valid numberings.

Lemma 4.4.6. Given a B-R System with a node n and edges mi → n ∈ R, 1 ≤ i ≤ k,

for any valid numbering F ,

F (n) =
∧

1≤i≤k

¬F (mi)

.

Proof. If ∃mi, f(mi) = 1, then
∧

1≤i≤k ¬F (mi) = 0 = F (n), by proposition 4.4.2. Sim-

ilarly if ∀mi, F (mi) = 0, then
∧

1≤i≤k ¬F (mi) = 1 = F (n), again, by proposition 4.4.2.

Hence, this lemma is true.

Now, we come to the central theorem of this thesis where we demonstrate that the

MULTISTABILITY problem is NP-Complete, and thus fundamentally a difficult problem
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Figure 4.12: Elements of 3-SAT reduction

to solve in the most general case.

Theorem 4.4.7. Determining if a B-R system is VARIABLY STABLE (UNSTABLE)

is NP-Complete.

Proof. Given an instance of 3-SAT problem {xi}1≤i≤n,
∧

1≤i≤m Ci, where Ci are the inde-

pendent clauses of the satifiability problem, create an B-R system S as follows.

For each variable xi, create 2 nodes in the B-R system xi,¬xi which are mutually

repressing as shown in figure 4.12(a). For all clauses Ci = (a∨ b∨ c), where a, b, c are the

values for the clause (e.g. for Cl = (x4, x2,¬x1), a = x4, b = x2, c = ¬x1), create a clause

node “¬Ci” with edges in R coming from the nodes a, b, c. This is shown graphically in

figure 4.12(b).

This system currently has 2n + m nodes and 2n + 3m edges. Add a node “AND”

to the system and add an edge from all of the clause nodes ¬Ci to this node (Figure

4.12(c)). Finally, add a repressilator to the system and connect “AND” to one node of

the repressilator (Figure 4.12(d)).

The final count for the size of this system is now 2n + m + 4 nodes and 2n + 4m + 4
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edges, a linear increase in the size of the 3-SAT problem. Therefore we have a polynomial

reduction. Now, this proof will prove that being able to state whether this system is

VARIABLY STABLE is equivalent to showing the 3-SAT instance is satisfiable. This

comes from the fact that the repressilator will remain unstable unless the F (AND) = 1.

So it is necessary to show that the value of F (AND) =
∧

1≤i≤m F (Ci). From the previous

lemma

F (¬Ci) = ¬F (a) ∧ ¬F (b) ∧ ¬F (c) = ¬(F (a) ∨ F (b) ∨ F (c)) = ¬Ci

Similarly, from the lemma it is possible to see for F (AND).

F (AND) =
∧

1≤i≤m

¬F (¬Ci) =
∧

1≤i≤m

¬¬Ci =
∧

1≤i≤m

Ci

Thus, there is a numbering with F (AND) = 1 if and only if the 3-SAT problem given

is satisfiable. Therefore, the repressilator remains unstable for all possible values of the

switches unless the 3-SAT problem is satisfiable. Thus, the problem, “Is a given B-R

system (N,R) VARIABLY STABLE?” is NP-Complete.

Since the B-R systems are a subset of the A-R systems, this implies that the prob-

lem “Is a given A-R system (N,A,R) VARIABLY STABLE?” is also, at minimum, NP-

Complete. The similar problem “Is a given A-R system VARIABLY UNSTABLE?” is

also NP-Complete. As can be seen by adding an extra node ¬AND, adding an edge

from AND to ¬AND, connecting ¬AND to the represillator and removing the edge

from AND to the represillator. Thus if F (¬AND) = ¬F (AND) = 0 the system is

UNSTABLE for a given settings for the switches.

For an A-R system to be guaranteed to be NP-Complete, this must be limited to

finite possible numberings. Otherwise, the non-deterministic nature of the problem will

not be bounded. If there was an A-R system with unbounded possible numberings,
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then the problem would lie within the capability of unbounded non-deterministic Turing

machines. A set, which was discussed before, is capable of handling the halting problem.

In fact, since the problem is NP-Complete for the bounded case, it is likely that it is

uncomputable in the general case for unbounded numberings.

Regardless, the problem remains not efficiently solvable in the general case.

Corollary 4.4.8. Stating a given B-R system is COMPLETELY STABLE or COM-

PLETELY UNSTABLE is CoNP-Complete

Proof. This follows naturally from theorem 4.4.7, as COMPLETELY STABLE = ¬

VARIABLY UNSTABLE and COMPLETELY UNSTABLE = ¬ VARIABLY STABLE.

So, what do these two proofs imply? First they imply that these systems are highly

complex entities, even when restricted to only repression, simply because the entire com-

plexity class NP is contained within their fixed state dynamics. Sadly, this also shows

that the problem of MULTISTABILITY is a fundamentally difficult problem, assuming

NP 6= P .

Corollary 4.4.9. The MULTISTABILITY problem is at least NP-Complete.

Proof. Given an instance of a 3-SAT problem, ({xi}1≤i≤n, {Ci}1≤i≤m it is possible to

convert it to a 3-SAT problem where the number of possible satifiable states are ≥ 2, if

and only if the original 3-SAT problem is satisfiable. This is done by adding one new

variable y and creating one new clause Cm+1 = (y∨y∨y). Obviously this system doubles

the number of satisfiable Boolean states for the original 3-SAT problem, and remains NP-

Complete without increasing the size of the instance by more than a constant amount.

With the reduction from the theorem 4.4.7, it is possible to create an A-R system

S = (N, A, R), for which there is more than one stable state if and only if the original

3-SAT problem is satisfiable. Thus, if it is possible to state the existence of multiple
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stable fixed states for the associated Mean Field Model to the A-R system, then it will

provide an answer to the associated 3-SAT problem.

Assuming that the conjecture that the A-R numbering gives all stable fixed states is

true, the problem of determining whether a given system is MULTISTABLE is guaranteed

to be NP-Complete, and likely uncomputable for systems where there are an unbounded

number of possible stable states.

This corollary shows that the MULTISTABILITY problem is provably difficult and

likely impossible. Finding an algorithm for the most general case will at very least solve

any problem in the NP complexity class. Sadly, it also points out that even restricting

the system in such a way that the stable states are finitely enumerable the problem

remains difficult as long as repression loops are maintained. Thus, it is necessary to look

at possible heuristics and subsets of the B-R systems (and the A-R systems) for which it

is possible to get a handle on the MULTISTABILITY problem and see if there is a point

where the system admits mathematical examination.



Chapter 5

Restrictions and Heuristics

This chapter discusses some further restrictions to the B-R system which allow for fur-

ther understanding of the MULTISTABILITY problem. As well, these restrictions give

special cases for which class membership is easily determined. Unfortunately, very few

systems exist after the restriction makes the system efficiently solvable. In fact, even with

the restriction to closed B-R systems, the problem remains NP-Complete. However, re-

gardless of the NP-Complete nature of the system, it is useful to look at restrictions

to learn more about where the complexity arises, and attempt to find some method to

handle a large class of systems more easily.

From these efficiently computable cases, a rough heuristic algorithm is developed

which easily determines membership for a variety of cases and becomes inefficient based

on how many disconnected even cycle only subsystems exist within the full system., thus

providing not only an angle of attack on the problem, but a way to bound the problem

given a starting set of disconnected even cycle only subsystems.

5.1 Closed B-R Systems

Closed B-R systems have been defined as systems where there exists a path from any

node to any other node. This implies that every node lies in a cycle and the system is

composed of a series of overlapping cycles. In the case where all of the cycles have the

same parity (either even or odd), the question of membership into the various classes of

systems is easily solved. In the case where one odd cycle is connected to a system of even

cycles, the question of membership remains easy. In fact, if only odd cycles are added to

the system of even cycles, the problem remains simple. What this provides is an insight

77
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Figure 5.1: A path connecting to the system T , creating a new cycle

as to where the complexity for the MULTISTABILITY problem lies.

Note that once there are n >> 1 systems of even cycles within a larger system, the

problem becomes intractable.

Proposition 5.1.1. If S is a closed B-R system where all cycles are even then the system

is COMPLETELY STABLE with exactly two different numberings.

Proof. Given a system S where all cycles are even, it is possible to construct two different

numberings which are valid for the system.

Take any cycle C ⊂ S and create a new system T = C. T will have two valid

numberings since it is an even cycle as per a previous lemma.

Repeat the following actions recursively until all nodes have been added to the system

T .

Take any other path of length k, which connects from one node of this system to

another node as shown in Figure 5.1, and continue this numbering through that path. It

is claimed that there remains two valid numberings for this new system.

Now, there are two possibilities: one is that the cycles will connect in such a fashion

that the path connects with an alternating numbering which does not interfere, in which
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case there will still be two valid numbering by taking the inversion of the current num-

bering (i.e., 0 goes to 1, and 1 goes to 0.) Thus the recursive assumption that T has two

numberings remains valid. This possibility includes the situation where the path starts

and ends at the same node. Since the path would then have to be of even length, it will

have an alternating numbering which does not conflict.

The other is that the path will start at n = 0 or 1, be of length k, and reconnect to the

existing system at m = n+k mod 2. In this case, there will only be one valid numbering

for the system, and so the system cannot be COMPLETELY STABLE. However, this

case implies the existence of an odd cycle. For the path to connect in this fashion, there

must be a different parity between the length of the path P and the distance of the

path L between the two nodes within the original system T that connect the path to the

graph. The two nodes which connect the path to the graph are part of some cycle C of

even length, by assumption. So, if a new cycle is created by taking C \ L ⋒ P , this new

cycle must have odd length. So therefore this is absurd given the assumptions that all

cycles are even.

Therefore, if the system is closed and all cycles are even, then the system is COM-

PLETELY STABLE with two numberings.

Proposition 5.1.2. Given a closed B-R system such that all cycles are odd, the system

is UNSTABLE

Proof. This will be done through proof by contradiction. Let S be a closed system

consisting entirely of odd cycles. First, assume that there is a valid numbering for S.

For a numbering to exist, there would have to be two consecutive zeroes at the starting

point of connection for each cycle in the numbering, with the second zero being the node

of connection. This is because for any numbering, if an odd cycle does not have at least

two zeros in a row, then it must have two ones in a row somewhere, which is impossible.

To establish the contradiction, take each cycle C and examine a double zero within
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the numbering. If this cycle is connected by a single node n to all other cycles in the rest

of the graph, the contradiction can be found by doing the following with the numbering

on the subsystem S ′ \C1 ∪{n}, where n is located at the double zero. So the numbering

must remain valid on this subsystem, because of the zero at the connecting point.

However, if the double zero occurs due to a connection to another cycle C2 with a

path P shared between them, having starting node p1 and ending node pk, p1 6= pk, then

the double zero must occur at the first node of that path. Since the first node of the

path is zero, then any numbering on the system S must remain valid on the subsystem

S ′ = {S \ P} ∪ {p1, pk}.

Note that these subsystems all have at least one cycle remaining. Taking the subsys-

tem, for which the numbering remains valid, repeat this procedure until there is a final

subsystem with only one cycle. Now, this cycle must be even since it must have a valid

numbering and odd cycles have no valid numberings. Thus, there exists an even cycle in

the original system contradicting the assumption that all cycles are odd.

Therefore, a system consisting of only odd cycles must be UNSTABLE.

Proposition 5.1.3. Given a closed B-R system of only even cycles, if a path is added

which creates an odd cycle, then the system is either STABLE or COMPLETELY STA-

BLE with two numberings.

Proof. Well, let T be the closed system consisting of only even cycles. Therefore T has

two possible numberings from the previous proposition. Add a path to the system which

creates an odd cycle. Let p1 be the start node of this path and pk be the end node of this

path. Now, as was seen in the constructive proof that a system with all even cycles has

two numbers where every node has value 0 for one numbering and value 1 for the other.

So by choosing the numbering where pk has value 0, then no matter what numbering the

path has, given p1’s number, it cannot conflict at pk, and thus will be a valid numbering.

Therefore, the system is at least STABLE, and perhaps COMPLETELY STABLE.
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It is easy to test if the system is COMPLETELY STABLE by flipping the value of p1

and verifying by following the numbering through the path and the system, and checking

if pk remains 0 and if any node pointing at p1 has a conflict by having two ones in a row.

If there is no conflict, and pk remains 0, then the system is COMPLETELY STABLE

with two numberings where pk is 0 in both numberings, otherwise the system is simply

STABLE.

The previous proof seems to offer a method to efficiently check if a system is either

STABLE or COMPLETELY STABLE by adding paths progressively to some initial

cycle. However, even though it seems that it should be possible that closed B-R systems

are simpler to handle, the problem of determining their dynamic attributes from their

structure still remains NP-Complete.

Theorem 5.1.4. Given a closed B-R system, solving whether the system is STABLE or

COMPLETELY STABLE is NP-Complete and UNSTABLE is coNP-Complete.

Sketch. The full details of this proof are omitted simply because this is a natural exten-

sion of the previous completeness proof where repression edges are added from the final

repressilator to all of the variables so that if the repressilator is not active, the new edges

will have no effect on the variable. This makes the system closed, while still making

membership in any of the classes dependent on the existence of a solution to the related

3-SAT problem.

In spite of this theorem, the proposition regarding even/odd cycles can still be used

to develop a heuristic algorithm to test whether a closed system lies within STABLE,

COMPLETELY STABLE, or UNSTABLE, and thus whether it is MULTISTABLE or

not. This is valuable, even though it can take a long time to run for certain cases.
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5.2 A Heuristic Approach

Even though the final theorem of the previous section implies that, even with this level of

restriction, membership problems remain intractable, there can be some hope. Using the

even-cycle system propositions from before, it is possible to develop a heuristic algorithm

which will work efficiently in cases where there are few disconnected even cycle subsys-

tems, and only becomes exponential based on the number of disconnected even-cycle

subsystems within the system.

The heuristic algorithm works as follows: Given a closed B-R system S, do the

following:

1. Find a set of disconnected closed even-cycled only subsystems contained within S,

(ie. E = {S1, S2, . . . , Sn}, Si ⊂ S, Si ∩ Sj = ∅, ∀Si, Sj ∈ E, Si is closed, and for

any cycle C ∈ Si, |C| is even. Note, the choice of this set will strongly influence

the runtime of the algorithm and thus there is room for speed and memory usage

improvement here.

2. It is known for each of these even-cycled systems that there are two possible num-

berings. Since they are seperated and thus do not influence eachother, there are

currently 2n possible numberings for the system consisting only of E.

3. For each of the subsystems Si, create a list containing the two numberings Ni and

do the following.

(a) If there exists a path P which starts and ends in Si, and has no nodes lying

in any other Sj ∈ E.

(b) Add P to Si, and check to see which valid numberings have pk, the last node

of P , set to 0. These all remain valid numberings, and need not be changed

beyond adding P to them and setting the path’s node values as appropriate.

This is similar to the all evens + one odd proposition from earlier.
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(c) If p1 in the path is 0 for all possible known numberings, test with each num-

bering to see if setting its value to 1 also leads to a valid numbering. If so,

add those numberings to the list of valid numberings for Si.

(d) Test each numbering by setting pk to 1 and changing other node’s values as

appropriate and seeing if this implies pk must also be 0. If it doesn’t, then

this is also a valid numbering

(e) Finally, if there are no valid numberings with pk being 0, then test if setting

pk to 0 leads to a valid numbering.

(f) Repeat this until there are no P which start and end in Si with no nodes in

other Sj .

4. At this point each Si will have some set of numberings Ni, possibly an empty set.

Now, take two subsystems, Si, Si+1, and repeat the following by taking the cross

product of their sets of valid numberings Ni,i+1 = Ni ⊗ Ni+1 and create a set of

systems Si,i+1 = Si ∪ Si+1

5. Repeat the previous two steps until there is only one system left, the original

system. Now, you will have a complete list of possible numberings for the original

closed system.

At this point, it is possible to determine which dynamic category the original system

S lies in. As well, with this tool, it becomes possible to determine these properties for

any non-closed systems as all that is needed is to run this algorithm for each subsystem

which acts as a controller, and then use the list of possible numberings for that controller

to pre-set full system values and repeat for controlled elements. Obviously, as there

are more controllers, the number of runs grows rapidly. This is, in essence, why the

MULTISTABILITY problem remains so difficult for systems which are not necessarily

closed. However, it is useful to note that determining if a non-closed system is unstable
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is as simple as determining if any of the controller subsystems are unstable, since once

they are unstable, they can never be stablized.

In a closed system, the runtime is mostly determined by the size of the initial set

E. As an exponential combination of numberings will need to be considered as the sets

Si, Si+1 are joined in step 4. Interestingly, this also points to the importance of even

cycled systems within a large genetic regulatory network since these systems are what

create the complexity within stable subsystems.

The PU.1, GATA-1 system is a known even cycled switch within the genetic regu-

latory network. However, there may exist far larger even cycled switches which, when

targeted correctly, can lead the cell to act in incredibly beneficial ways. As discussed

in the introduction, it would be reasonable to believe that the methodology to get to

the pluripotent cell type essentially does exactly this. By targeting a variety of genes

within a large switch, it becomes easier to push it over the breaking point and make the

cell revert to an earlier state. From a medical perspective knowing that the even cycled

systems are likely to be the important systems to target removes a large swath of targets

for drug therapy.

From a biocomplexity perspective, this heuristic and the realization that the even

cycles are likely the important cycles with regards to the complexity of behaviour for

stability and genetic memory provides a small insight into how complex biological systems

work and maintain state. This is a natural continuation to the empirical fact that positive

feedback loops provide switch-like behaviour within GRNs.



Chapter 6

Conclusions and Discussion

Any problems regarding genetic regulatory networks will be inherently intractable due to

the overwhelming complexity of the chemical systems involved. However, by ignoring a

lot of extraneous behaviour and building a combinatorial model based on the Mean Field

Model in order to solve a specific problem, the MULTISTABILITY problem, it becomes

possible to determine certain interesting systems, map the difficulty of the problem to

other known problems, and attempt to create heuristics which solve it in special cases.

However, it ended up that even with the simplified model the problem remains intractable

in the most general case. Although, the insight provided by the various minor proofs

does allow for heuristics and restrictions to be developed which give solutions rapidly for

particular cases.

Biologically, this method for gaining some intuition into genetic regulatory networks

could be immediately applied to known genetic regulatory network connections to search

for possible genetic switches, like the PU.1, GATA-1 switch. Since it is known that even

loops have the most likelihood of being multistable, searching for small even loops within

the network could be an effective way to find switches. As discussed, this is already

being done to a small extent with two gene toggle switches. However, there is no reason

that larger, even-cycled, closed subsections could not also be targets for drug candidates.

Especially since having more than one gene to target should make it easier to force the

entire switch to flip over. The restrictions in this paper, while based on some popular

thought in biology, are fairly arbitrary. Restricting to repression-only systems makes the

mathematics easier, but ignores the potential for strong activation to significantly change

the dynamics. If mathematical research was concentrated into other possible restrictions

85
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which better reflect real world networks, it would provide better heuristics for finding

multistable subsystems. Similarly, extending the B-R system results to A-R systems to

some degree would be valuable.

Mathematically, the methods raised open up a fascinating new way to study certain

aspects of mutually interacting dynamical systems. As discussed, the A-R numbering

problem could be extended and adjusted for different dynamical systems in several ways.

First, weights could be added to the edges and the f -function adjusted appropriately.

Second, the f, a, and r-functions within the problem could be modified to compensate

for another interacting dynamical system. The particular functions were chosen to be

appropriate for the set of interactions seen by the Mean Field Model system of ODEs.

It is trivial to adjust them in order to reflect other systems of ODEs which have nodes

interdependent in a common fashion.

Finally, the A-R system is only a system of two digraphs. As was seen with B-R

systems, fewer digraphs can be easily used to adjust the system. However, it is also

possible to add more digraphs in order to deal with more complex interactions within the

ODEs. With all of these methods of extending the A-R numbering, it becomes possible

to map dynamics with the property of having similar interactions between nodes to the

structure of a system of digraphs. A fascinating way to study certain, common dynamical

systems.

Even though the model can be extended to cover even more systems, it is also interest-

ing to find out how many systems the A-R or B-R systems as they are currently defined

could simulate. If the subset of possible dynamical systems is restricted, it provides an

insight on the restricted nature of genetic regulatory network dynamics. On the hand,

if the set of possible dynamical systems covers a wide swath, it invites the possibility

of developing more techniques with the A-R numbering to find structural properties of

dynamic systems. In either case, there is potential for some exciting mathematics.

While most of the evidence seems to imply that conjectures 4.2.2, 4.4.3 are valid, it



87

would probably be an interesting exercise to obtain a definitive answer to this question.

Any answer would likely provide an interesting technique for acquiring stable fixed points

without directly referring to the commonly used methods already in existence. If either

conjecture proves false, the exceptional cases could give some insight about chaotic feed-

back systems since the counterexample’s fixed point may have some unusual properties.

Regardless of the truth of these conjectures, the question asked seems to open up a new

connection between combinatorics and dynamics.

Due to the relations between the B-R system and bounded non-deterministic prob-

lems, and the A-R system, and potentially unbounded non-deterministic problems, there

is also a route of investigation for a computational theorist. As restrictions are added to

the system, the system becomes progressively easier to compute answers for. Hence, it

would be interesting to see if other restrictions could be added which make the problem

fit into other interesting complexity classes like bounded probabilistic polynomial. As the

initial system is continuous but can be made discrete. It may even provide a transition

from continuous computational problems to discrete ones.

As the statistician George E.P. Box stated, ”all models are wrong, but some are

useful.” The Mean Field Model used to develop the A-R system doesn’t incorporate every

complexity of the associated real world system and the A-R system further simplifies it.

However, this does not imply that the tools are not useful as an intuition or will not

lead to interesting mathematics on their own. As the intractability of biological systems

is made more apparent, having good computational models can be good for simulation,

and having simple intuitive models can be even more useful for simple understanding. It

is the view of the author that further research to find simpler mathematical structures

which still maintain reasonable similarities to the real world system is necessary and this

thesis is a small first step towards this end.

As stated in the introduction, sometimes it is better to start from the problem rather

than defining the system as whole. By developing a model with the goal of gaining a better
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handle on the problem, more intuition about the system can be gained, even though the

model itself is not a perfect representative. By having a better idea of MULTISTABILITY

and other biological problems, better models to study them with, and methods which

map them to other known computational problems, it becomes possible to find vectors

of attack towards solving deep biological and medical problems. Similarly, by developing

these models solely to solve said problems, rather than developing the models to perfectly

match reality, new tools and connections will necessarily also be developed. Hence, these

techniques not only drive biological knowledge forward, but mathematical insight as well.
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