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Maximum Power Efficiency and Criticality in Random Boolean Networks
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Random Boolean networks are models of disordered causal systems that can occur in cells and
the biosphere. These are open thermodynamic systems exhibiting a flow of energy that is dissipated
at a finite rate. Life does work to acquire more energy, then uses the available energy it has gained
to perform more work. It is plausible that natural selection has optimized many biological systems
for power efficiency: useful power generated per unit fuel. In this letter we begin to investigate
these questions for random Boolean networks using Landauer’s erasure principle, which defines a
minimum entropy cost for bit erasure. We show that critical Boolean networks maximize available
power efficiency, which requires that the system have a finite displacement from equilibrium. Our
initial results may extend to more realistic models for cells and ecosystems.

PACS numbers: 89.75.Fb, 87.10.-e, 05.45.-a

Introduction: Random Boolean networks (RBNs) are
a powerful class of models for complex causal systems
[1, 2]. However, a thermodynamics for such networks has
not yet been developed. In this paper we define a mini-
mum rate of energy flow for general RBNs and show that
dynamically critical RBNs maximize power efficiency.

A Boolean network (BN) consists of n nodes that out-
put one bit each per time-step. Each node i receives
inputs from ki nodes and uses a Boolean function fi that
can be defined thus:

fi : {0, 1}ki 7→ {0, 1} (1)

to compute its output. A BN model is logically equiva-
lent to the system it is simulating. Random BNs are used
to make statistical statements about systems whose log-
ical structure is unknown (or incompletely known). The
number of connections between the nodes of an RBN can
come from any desired distribution. The Boolean func-
tions are assigned to the nodes randomly from a uniform
distribution over the possible Boolean functions, and all
the nodes’ outputs update synchronously. A state of a
Boolean network is the current outputs of the n nodes;
the system traces out a trajectory of state transitions
until it reaches a state-cycle attractor.

There exist a variety of metrics which can be used to
characterize the behavior of Boolean nets. One of these
is the Hamming metric, which is the number of bits by
which two states differ. For any of these metrics, there
exists an ordered regime, where nearby states lie on tra-
jectories that converge on average in state space, and a
chaotic regime where nearby states have divergent trajec-
tories [2]. These two regimes are separated by a critical
surface (i.e. a phase transition) on which such trajecto-
ries stay the same average Hamming distance apart. (See
[3] for an example of this effect in another metric.)

One way to derive thermodynamics starts from the def-
inition of the Carnot cycle, which gives a criterion for

maximizing energy efficiency: the most energy efficient
machine for performing work is a reversible one, i.e. that
a machine must be at least as energy-inefficient as it is
irreversible [4]. We show that by using a minimal notion
of reversibility and hence an entropy production rate for
RBNs, it is possible to define such a thermodynamics in
terms of a specific dissipation rate [5, 6].

In the next two sections we outline some of the con-
cepts we use in the paper and develop them into formal
definitions in the following section. Using Landauer’s era-
sure principle [7] we derive expressions for the minimum
(intrinsic) entropy production rate and hence the maxi-
mum possible power efficiency for RBNs and demonstrate
that the power efficiency of RBNs is maximized when the
network is critical. We finish by proposing a “maximum
power principle” for RBNs and discuss some possible fur-
ther developments of this work.

Logically reversible computation and Landauer’s prin-

ciple A reversible Turing machine [8, 9] is similar to a
conventional Turing machine (TM); both of them have a
tape that consists of a string of “cells”, each of which can
contain only one bit. The tape is used as a memory and
initially may contain input data (if used) that is accessed
by a read-write head, which can move left or right and
passes information to and from the processor, which con-
sists of a transition function (or table) that is a finite set
of instructions (the program) together with the state reg-

ister that stores the state of the processor, thus enabling
the TM to keep track of where it is in its table. Unlike a
conventional TM, a reversible TM is also required to be
able to run backwards, i.e., at every step of the computa-
tion, the immediately preceding state must be uniquely
defined. If we think of the TM as tracing out paths in
a space of possible states, this requirement means that
whenever two paths in this state-space merge, the TM
must somehow keep track of which path it followed to
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reach that point. This information is called the history

of the computation and can be thought of as being writ-
ten on a second tape. (One tape is sufficient, but two are
often used for pedagogical purposes.)

The only logically irreversible step in a computation
is the erasure of information. Landauer’s erasure princi-
ple [7] is a corollary of Boltzmann’s definition for the en-
tropy, S = kB ln Ω, and states that a logically irreversible
erasure is also thermodynamically irreversible. Thus the
irreversible erasure of a completely random, unknown,
binary bit of information must generate an amount of
entropy not less than kB ln 2.

The definition of an irreversible erasure for a logical bit
is subtle, not least because there may be multiple, redun-
dant copies of each bit in the machine’s memory. In order
for a bit to survive a computational step, we must be able
to find a copy of it after the step in a specified location
that only depends on the program being executed, but
not on the values of the other variables. If the informa-
tion in the bit ends up in different places depending on
some other variables, it cannot be retrieved in this way
[10]. The ability to retrieve the logical bit at a later time
is essential; even with a complete description of a given
TM, this entire-machine erasure rate is an uncomputable
function, even for computations that halt [11].

After the machine has completed its calculation and
copied its result, it must somehow return to its initial
state in order to close the work-cycle. However, it can-
not simply reset its memory, as this would require log-
ically irreversible erasures (i.e., dissipation). The only
way the machine can clean up its memory without eras-
ing anything is to “uncompute” the calculation it has just
performed and run backwards to its initial state.

A minimal thermodynamics for RBNs: The original
motivation for reversible computation theory was to de-
termine if computation required a non-zero rate of energy
dissipation. The fact that it doesn’t led Bennett to com-
pare a reversible computation to a Carnot cycle [9, 12].

Bennett’s results were obtained for Turing machines;
strictly speaking, a Boolean network is not a Turing ma-
chine. However, a BN can be described as a network
of finite TM nodes operating in parallel with each node
computing the value of its Boolean logic function. The
nodes can output at most one bit at each computing cy-
cle, though they are permitted to make copies of that bit
and distribute them along the edges of their network di-
graph to some number of other nodes. The TM at each
node has a k-bit memory (part of its tape) for the values
on the input edges to that node, and it only needs a finite
size working space on its tape (as any Boolean function
on k inputs can always be implemented by something no
bigger than a finite-size look-up table, thus needs only a
finite memory). Thus we need only consider a finite-size,
k-bit input TM at each node; the asymptotic limit in our
analysis is the limit when the number of nodes tends to
infinity, not when k tends to infinity. This is fortunate,

because if each node was a full-size TM, the erasure rate
at each node would also be an uncomputable function
(by Zurek’s argument in [11]) as well as the erasure rate
for the infinite BN as a whole.

For a Boolean function with a probability p of out-
putting a 1 (called the “bias” of the function) erasure
produces a change in entropy ∆S of at least −kBS(p),
where S(p) is the Shannon entropy [13] of the bit. As
long as the values of the nodes continue to change, the
BN has not halted, even after it has entered a limit cy-
cle. The BN will continue to erase bits every time it
passes though a point in state space where a trajectory
joins that limit cycle, because the system cannot remem-
ber what its precursor state was without storing at least
one history bit [14]. Thus these history bits must be
either stored or erased whenever a tributary trajectory
joins the limit cycle. Landauer’s principle dictates that
erasing these history bits must cause dissipation.

Furthermore, reversible TMs can only achieve compu-
tation without dissipation if proceeding at zero speed
[9, 12]. Fortunately, Bennett extended his rules to finite-
speed computation [9, 10, 12, 14, 15]. As soon as the
computation leaves this adiabatic limit, the laws govern-
ing the entropy generation rate change: computation at
finite speed requires dissipation, just as the ideal energy
efficiency for any work-cycle can only be achieved in the
adiabatic limit, when it is performed quasi-statically.

If our BN is to run at a non-zero speed for a useful
length of time, we must supply power to drive it. For
example, consider a BN implemented as a set of coupled
chemical reactions: the concentrations of the reagents
will only fluctuate around their equilibrium values unless
active steps are taken to drive the system away from equi-
librium. For a reversible TM to be r times more likely
to move forwards as backwards requires kBT ln r energy
to be dissipated per computational step [12, 14]. The
need to drive the BN with some (generalized) force is a
general fact about reversible computation at finite speed
and is completely independent of its implementation; it
holds whether the BN is a genetic network or something
else. Only the dimensionless expression for r will depend
on these details. This implies an energy cost for copying;
while logically reversible, it can only be done for free if
performed infinitely slowly [9, 12]. The faster the copies
are produced, the more energy they will cost, even if the
register into which each copy is written was blank.

For processes that must occur in a finite time, a more
natural (and useful) measure is the power efficiency,
which is given by the Gouy-Stodola theorem [16]:

dWrev

dt
−

dWuse

dt
= T

dS

dt
(2)

where T is the temperature of the environment into which
the entropy S is released. The Gouy-Stodola efficiency is
maximized when the rate of entropy production per unit
of power supplied to the system is minimized [16].



3

We seek expressions for expected (mean-field) values
for an otherwise unknown RBN drawn at random from
some ensemble defined by some macroscopic parameters,
such as the bias, p. We therefore have only partial infor-
mation about this RBN. Since BNs evolve in a discrete
time steps, we use a finite-difference version of this equa-
tion. and a mean-field approximation to the discrete dy-
namics to calculate the expected entropy production rate.
As this method finds an average value per node, we will
write the mean k instead of ki for the in-degree of a typ-
ical node i. This approach should also allow discussion
of the expected power requirements of the RBN under
different initial conditions.

Reversible simulation of an irreversible TM incurs
overheads in either time, space, or both [17, 18]. Since
we must supply power to the BN for each time step [12],
any increase in the time taken will cost us, so we focus on
time-parsimonious simulations. A large space overhead
[18] raises the problem of where that information can be
stored. If there is insufficient memory, then some bits
will need to be erased [10]. Even so, additional mem-
ory can only delay the inevitable, after which the rate
of copying information cannot exceed the erasure rate;
writing a bit of information requires somewhere to write
it. For each directed edge leaving a node, a copy is made
of that node’s bit onto that edge; thus for a node with
out-degree m, and since m = k, k edges must be prepared
locally. We also assume that every node has at least one
incoming edge, without loss of generality.

In 2004, Shmulevich and Kauffman [19] defined a new
measure of the average dynamical properties of BNs that
they called the sensitivity, s of the Boolean function fi,
which is the number of inputs to fi for which flipping
that input bit alone changes the value of fi. Such input
bits are said to be relevant to that node. The more sensi-
tive a BN is, the better it remembers perturbations; thus
the rate it erases the information that distinguishes one
computational path from another is low.

Shmulevich and Kauffman showed [19] that for a
Boolean function of bias p, the probability that an in-
put edge is relevant to any given node (its “activity”) is
α = 2p(1 − p). Whether or not an input bit is locally
erased at a particular node depends on its relevance to
that node. This will typically depend on the values of
other input edges. However, the irrelevant bits may not
have been erased from the network as a whole. If an edge
is irrelevant, the local copy on that edge is lost, since it
is not recoverable by any procedure that is independent
of the state of the larger RBN, if at all. If all edge-copies
of a bit are irrelevant under at least one set of values of
the other edges (it need not be the same set) then that
bit is irreversibly erased [10].

A lower bound for the expected entropy production rate

per node: To make an BN as efficient as possible, we
must minimize the number of irreversible erasures at each
step, or equivalently, the number of copies used by each

node per step. We use Landauer’s principle and the non-
zero energy cost of copying a bit at a finite speed [12] to
find a lower bound for the entropy production rates for
RBNs. Writing Eq. (2) in finite difference form gives

∆Win

∆t
=

T∆S

∆t
+

∆Wuse

∆t
(3)

where T∆S is the dissipated energy lost due to Lan-
dauer’s principle and ∆Wuse is the free energy available
per step to drive the computation forward. We divide (3)
by the finite difference ratio ∆Wrev/∆t to obtain the cor-
responding power efficiency measure:

EP :=
∆Wuse

∆Wrev

=
∆Wrev − T∆S

∆Wrev

= 1 −
T∆S

∆Wrev

. (4)

Let Ain be the expected number of edges that need to
be prepared for each node for each time-step. Let Aout

be the expected number of bits of information erased per
node per time step as a result of the computation. Then
D, the specific dissipation rate per node is

D := |(Ain − Aout)/Ain| , (5)

which will give us EP = 1 − DT. (The modulus func-
tion is needed because for some ranges of the parameters
there is a net loss of information at the node, whereas for
others, the network is sending bit-copies into the node’s
equivalent finite TM that are not erased at this time-step
since they are relevant to the function at that node.)

Shmulevich and Kauffman also demonstrated [19] that
the sensitivity can be defined for every BN. They calcu-
lated this value to be s = kα and show that when s = 1,
the RBN is critical. We use this to show that the dis-
sipated power D is minimized for critical networks, and
thus EP is maximized accordingly. Since the expected
activity of each edge is α we see that on average every
node will have at least k(1−α)+1 = k−s+1 copies which
must be deleted in the process of computing the Boolean
function for the associated node, since they are inactive
at that node. (The additional +1 is from the deletion
of the output bit from the previous time-step.) Since
these input bits are irrelevant, their information content
cannot be retrieved from the output of that node. Since
Ain = k, this allows us to write down an expression for
the expected rate of information loss per node:

Aout = k(1 − α) + 1 = k − kα + 1 = 1 + k − s. (6)

Using Eq. (6), it is possible to approximate the erasure
rate D for a BN given any two of p, s, or k.

D = |(k − (1 + k(1 − α)))/k| = |α(s − 1)/s| , (7)

where k = s/α. Thus when s = 1 (i.e. k = α−1) we have
D = 0 at the critical line. Since D is the average erasure
rate per node, the power efficiency EP is maximized at
the dynamical critical line for RBNs. As long as every
node has at least one incoming edge, the minimum lower
bound for D = 0 occurs at critical values of k.
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FIG. 1: Power efficiency EP at T = 1, as a function of s and p,

showing maximized power efficiency in a ridge at criticality;
EP is maximized at the critical line of Derrida and Pomeau
[22]. As p → 0 or 1 the input bits at each node have a lower
Shannon entropy, so less information is lost if the output bit
is subsequently erased. Thus EP → 1 when p→ 0 or 1.

A “maximum power principle” and other questions:

Suppose we have an expression for the power available
to drive the RBN, ∆Win/∆t. A reversible TM comput-
ing at a rate r consumes energy kBT ln r per time step.
The form of the rate function r will depend on the im-
plementation of the RBN. Thus we have an expression
for the maximum possible “metabolic rate” per node for
the RBN with bias p,

r = S(p)e−DePin∆t/kBT . (8)

The RBNs most closely approaching these upper bounds
are dynamically critical; this suggests the existence of a
“maximum power principle” [20, 21] for RBNs. Figure 1
shows how EP varies with s and p when k is fixed; similar
behavior occurs for other distributions of k.

It should be noted that the distinction between the
copy-cost and the available energy cost may not be sharp
in some implementations. In the molecular computer
mentioned above, the driving power is supplied via the
chemical potential terms in the Gibbs free energy. Main-
taining the reactants in such non-equilibrium concentra-
tions requires the larger system to do work.

Conclusion We have shown that critical RBNs maxi-
mize power efficiency; critical RBNs also maximize pair-
wise mutual information [23]. We conjecture a direct
causal link between these three phenomena. Moreover
Odum has proposed a maximum power principle for
ecosystems [20] and Ulanowicz has argued that mature
ecosystems maximize their mutual information content
[24]. Furthermore, cells may be critical [3] and the rate
of accumulation of biomass in an ecosystem may also be

maximized at criticality [25, 26]. In more detailed and
realistic models that include more modes of energy ex-
penditure, our lower bound should increase. Future work
will look for direct relationships between criticality, mu-
tual information and power efficiency in causal networks.
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Gen. 34, 6821 (2001), arXiv:quant-ph/0101133.
[19] I. Shmulevich and S. A. Kauffman, Phys. Rev. Lett. 93,

048701 (2004).
[20] H. T. Odum, Maximum Power: The Ideas and Applica-

tions of H.T. Odum, Chapter 28: Self-organization and
maximum empower (University Press of Colorado, 1995),
edited by Charles A.S. Hall, ISBN: 0870813625.

[21] A. J. Lotka, Proc. Natl. Acad. Sci. USA 8, 147 (1922).
[22] B. Derrida and Y. Pomeau, Europhys. Lett. 1, 45 (1986).
[23] A. S. Ribeiro, S. A. Kauffman, J. Lloyd-Price,

B. Samuelsson, and J. E. Socolar, Phys. Rev. E 77,
011901 (2008), arXiv:0707.3642.

[24] R. E. Ulanowicz, Proc. Natl. Acad. Sci. USA 80, 305
(1987).

[25] H. V. Westerhoff, K. J. Hellingwerf, and K. V. Dam,
Proc. Natl. Acad. Sci. USA 80, 305 (1983).

[26] S. E. Jørgensen, J. theor. Biol. 175, 13 (1995).

mailto:hcartere@qis.ucalgary.ca
mailto:kjrose@gmail.com

